Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069046

RESUMO

Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 µM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.


Assuntos
Anti-Infecciosos , Peptídeos Penetradores de Células , Staphylococcus aureus Resistente à Meticilina , Humanos , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Staphylococcus aureus , Escherichia coli , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas Ribossômicas/farmacologia , Testes de Sensibilidade Microbiana
2.
Biochimie ; 214(Pt B): 86-95, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37356563

RESUMO

The study aimed to investigate the effects of gliotoxin (GTX), a secondary fungal metabolite belonging to the epipolythiodioxopiperazines class, on Gram-positive and Gram-negative bacteria. While the cytotoxic mechanism of GTX on eukaryotes is well understood, its interaction with bacteria is not yet fully comprehended. The study discovered that S. epidermidis displayed a higher uptake rate of GTX than E.coli. However, Gram-negative bacteria required higher doses of GTX than Gram-positive bacteria to experience the bactericidal effect, which occurred within 4 h for both types of bacteria. The treatment of bioluminescent sensor E.coli MG1655 pKatG-lux with GTX resulted in oxidative stress. Pre-incubation with the antioxidant Trolox did not increase the GTX inhibitory dose, however, slightly increased the bacterial growth rate comparing to GTX alone. At the same time, we found that GTX inhibitory dose was significantly increased by the pretreatment of bacteria with 2-mercaptoethanol and reduced glutathione. Using another biosensor, E. coli MG1655 pIpbA-lux, we showed that bacteria treated with GTX exhibited heat shock stress. SDS-page electrophoresis demonstrated protein aggregation under the GTX treatment. In addition, we have found that gliotoxin's action on bacteria was significantly inhibited when zinc salt was added to the growth medium.


Assuntos
Gliotoxina , Gliotoxina/farmacologia , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas , Estresse Oxidativo , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA