Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(33)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164000

RESUMO

We report on transport measurements in monolayer MoS2devices, close to the bottom of the conduction band edge. These devices were annealedin situbefore electrical measurements. This allows us to obtain good ohmic contacts at low temperatures, and to measure precisely the conductivity and mobility via four-probe measurements. The measured effective mobility up toµeff= 180 cm2V-1s-1is among the largest obtained in CVD-grown MoS2monolayer devices. These measurements show that electronic transport is of the insulating type forσ≤ 1.4e2/handn≤ 1.7 × 1012cm-2, and a crossover to a metallic regime is observed above those values. In the insulating regime, thermally activated transport dominates at high temperature (T> 120 K). At lower temperatures, conductivity is driven by Efros-Schklovkii variable range hopping in all measured devices, with a universal and constant hopping prefactor, that is a clear indication that hopping is not phonon-mediated. At higher carrier density, and high temperature, the conductivity is well modeled by the Boltzmann equation for a non-interacting Fermi gas, taking into account both phonon and impurity scatterings. Finally, even if this apparent metal-insulator transition can be explained by phonon-related phenomena at high temperature, the possibility of a genuine 2D MIT cannot be ruled out, as we can observe a clear power-law diverging localization length close to the transition, and a one-parameter scaling can be realized.

2.
Phys Rev Lett ; 118(23): 239602, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644657
3.
Phys Rev Lett ; 118(8): 086101, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28282203

RESUMO

The quantitative analysis of electron-optical phase images recorded using off-axis electron holography often relies on the use of computer simulations of electron propagation through a sample. However, simulations that make use of the independent atom approximation are known to overestimate experimental phase shifts by approximately 10%, as they neglect bonding effects. Here, we compare experimental and simulated phase images for few-layer WSe_{2}. We show that a combination of pseudopotentials and all-electron density functional theory calculations can be used to obtain accurate mean electron phases, as well as improved atomic-resolution spatial distribution of the electron phase. The comparison demonstrates a perfect contrast match between experimental and simulated atomic-resolution phase images for a sample of precisely known thickness. The low computational cost of this approach makes it suitable for the analysis of large electronic systems, including defects, substitutional atoms, and material interfaces.

4.
Nanoscale ; 8(45): 19148-19153, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27827513

RESUMO

We report on the structural, electronic and magnetic properties of a monolayer of GdAg2, forming a moiré pattern on Ag(111). Combining scanning tunneling microscopy and ab initio spin-polarized calculations, we show that the electronic band structure can be shifted linearly via thermal controlled strain of the intra-layer atomic distance in the range of 1-7%, leading to lateral hetero-structuring. Furthermore, the coupling of the incommensurable GdAg2 alloy layer to the Ag(111) substrate leads to spatially varying atomic relaxation causing subsurface layer buckling, texturing of the electronic and spin properties, and inhomogeneity of the magnetic anisotropy energy across the layer. These results provide perspectives for control of electronic properties and magnetic ordering in atomically-thin layers.

5.
Phys Rev Lett ; 117(11): 116101, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661702

RESUMO

Existing examples of Peierls-type 1D systems on surfaces involve depositing metallic overlayers on semiconducting substrates, in particular, at step edges. Here we propose a new class of Peierls system on the (101[over ¯]0) surface of metal-anion wurtzite semiconductors. When the anions are bonded to hydrogen or lithium atoms, we obtain rows of threefold coordinated metal atoms that act as one-atom-wide metallic structures. First-principles calculations show that the surface is metallic, and below a certain critical temperature the surface will condense to a semiconducting state. The idea of surface scaffolding is introduced in which the rows are constrained to move along simple up-down and/or sideways displacements, mirroring the paradigm envisioned in Peierls's description. We predict that this type of insulating state should be visible in the partially hydrogenated (101[over ¯]0) surface of many wurtzite compounds.

6.
Nano Lett ; 16(7): 4230-5, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27247988

RESUMO

Materials that exhibit ferromagnetism, interfacial stability, and tunability are highly desired for the realization of emerging magnetoelectronic phenomena in heterostructures. Here we present the GdAg2 monolayer alloy, which possesses all such qualities. By combining X-ray absorption, Kerr effect, and angle-resolved photoemission with ab initio calculations, we have investigated the ferromagnetic nature of this class of Gd-based alloys. The Curie temperature can increase from 19 K in GdAu2 to a remarkably high 85 K in GdAg2. We find that the exchange coupling between Gd atoms is barely affected by their full coordination with noble metal atoms, and instead, magnetic coupling is effectively mediated by noble metal-Gd hybrid s,p-d bands. The direct comparison between isostructural GdAu2 and GdAg2 monolayers explains how the higher degree of surface confinement and electron occupation of such hybrid s,p-d bands promote the high Curie temperature in the latter. Finally, the chemical composition and structural robustness of the GdAg2 alloy has been demonstrated by interfacing them with organic semiconductors or magnetic nanodots. These results encourage systematic investigations of rare-earth/noble metal surface alloys and interfaces, in order to exploit them in magnetoelectronic applications.

7.
J Chem Phys ; 136(6): 064708, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22360216

RESUMO

We analyze how functionality could be obtained within single-molecule devices by using a combination of non-equilibrium Green's functions and ab initio calculations to study the inelastic transport properties of single-molecule junctions. First, we apply a full non-equilibrium Green's function technique to a model system with electron-vibration coupling. We show that the features in the inelastic electron tunneling spectra (IETS) of the molecular junctions are virtually independent of the nature of the molecule-lead contacts. Since the contacts are not easily reproducible from one device to another, this is a very useful property. The IETS signal is much more robust versus modifications at the contacts and hence can be used to build functional nanodevices. Second, we consider a realistic model of a organic conjugated molecule. We use ab initio calculations to study how the vibronic properties of the molecule can be controlled by an external electric field which acts as a gate voltage. The control, through the gate voltage, of the vibron frequencies and (more importantly) of the electron-vibron coupling enables the construction of functionality: nonlinear amplification and/or switching is obtained from the IETS signal within a single-molecule device.

8.
Phys Rev Lett ; 105(1): 016101, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867467

RESUMO

Surface alloying is a powerful way of varying physical and chemical properties of metals, for a number of applications from catalysis to nuclear and green technologies. Surfaces offer many degrees of freedom, giving rise to new phases that do not have a bulk counterpart. However, the atomic characterization of distinct surface compounds is a major task, which demands powerful experimental and theoretical tools. Here we illustrate the process for the case of a GdAu2 surface phase of extraordinary crystallinity. The combined use of surface-sensitive techniques and state-of-the-art ab initio calculations disentangles its atomic and electronic properties. In particular, the stacking of the surface layers allows for gadolinium's natural ferromagnetic state, at variance with the bulk phase, where frustration leads to antiferromagnetic interlayer coupling.

9.
J Phys Condens Matter ; 21(31): 315002, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21828587

RESUMO

The present scanning tunneling microscopy (STM) study describes the growth of silver-palladium heterostructures at room temperature, with ab initio simulations of ordered AgPd phases supporting the interpretation of STM images. First, the growth of Pd on an Ag(111) surface proceeds in a multilayer mode, leading to the formation of a columnar structure. Then, upon Ag deposition on this structure, Ag and Pd partially mix and form a two-dimensional AgPd alloy on top of the columns. Finally, an atomically flat Ag(111) surface is restored, and two-dimensional growth continues. An interpretation of this peculiar growth mode including interfacial alloying is proposed based on thermodynamic and kinetic arguments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA