Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm X ; 7: 100226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38235316

RESUMO

In this study, an in-depth comparison was made between batch and continuous direct compression using similar compression set-ups. The overall material processability and final tablet quality were compared and evaluated. Correlations between material properties, process parameters and final tablet properties were made via multivariate data analyses. In total, 10 low-dosed (1% w/w) and 10 high-dosed (40% w/w) formulations were processed, using a total of 10 different fillers/filler combinations. The trials indicated that the impact of filler type, drug load or process settings was similar for batch and continuous direct compression. The main differentiator between batch and continuous was the flow dynamics in the operating system, where properties related to flow, compressibility and permeability played a crucial role. The less consistent flow throughout a batch process resulted in a significantly higher variability within the tablet press (σCF) and for the tablet quality responses (σMass, σTS). However, the better controlled blending procedure prior to batch processing was reflected in a more consistent API concentration variability. Overall, the comparison showed the benefits of selecting appropriate excipients and process settings to achieve a specific outcome, keeping in mind some key differentiators between both processes.

2.
Int J Pharm ; 652: 123816, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38246479

RESUMO

A better understanding of crystallization kinetics and the effect on drug product quality characteristics is needed to exploit the use of semi-crystalline polymers in pharmaceutical fused filament fabrication. Filaments were prepared from polycaprolactone or polyethylene oxide loaded with a crystallization inhibitor or inducer, which was either 10% (w/w) ibuprofen or theophylline. A design-of-experiments approach was conducted to investigate the effect of nozzle temperature, bed temperature and print speed on the printed tablets' microstructure and dissolution kinetics. Helium pycnometry derived porosity proved an ideal technique to capture significant distortions in the tablets' microstructure. On the other hand, terahertz time domain spectroscopy (THz-TDS) analysis proved valuable to investigate additional enclosed pores of the tablets' microstructure. The surface roughness was analyzed using optical coherence tomography, showing the importance of extensional viscosity for printed drug products. Drug release occurred via erosion for tablets consisting of polyethylene oxide, which partly reduced the effect of the inner microstructure on the drug release kinetics. An initial burst release effect was noted for polycaprolactone tablets, after which drug release continued via diffusion. Both the pore and crystalline microstructure were deemed essential to steer drug release. In conclusion, this research provided guidelines for material and process choice when a specific microstructure has to be constructed from semi-crystalline materials. In addition, non-destructive tests for the characterization of printed products were evaluated.


Assuntos
Polietilenoglicóis , Polímeros , Porosidade , Liberação Controlada de Fármacos , Comprimidos/química , Polímeros/química , Tecnologia Farmacêutica/métodos , Impressão Tridimensional , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA