Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protoplasma ; 255(5): 1581-1594, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29637285

RESUMO

The aim of the present report was to demonstrate how a novel approach for immunohistochemical localization of cytokinins in the leaf and particularly in the phloem may complement to the study of their long-distance transport. Different procedures of fixation were used to conjugate either cytokinin bases or their ribosides to proteins of cytoplasm to enable visualization and differential localization of these cytokinins in the leaf cells of wheat plants. In parallel to immunolocalization of cytokinins in the leaf cells, we immunoassayed distribution of free bases of cytokinins, their nucleotides and ribosides between roots and shoots of wheat plants as well as their presence in phloem sap after incubation of leaves in a solution supplemented with either trans-zeatin or isopentenyladenine. The obtained data show ribosylation of the zeatin applied to the leaves and its elevated level in the phloem sap supported by in vivo localization showing the presence of ribosylated forms of zeatin in leaf vessels. This suggests that conversion of zeatin to its riboside is important for the shoot-to-root transport of zeatin-type cytokinins in wheat. Exogenous isopentenyladenine was not modified, but diffused from the leaves as free base. These metabolic differences may not be universal and may depend on the plant species and age. Although the measurements of cytokinins in the phloem sap and root tissue is the most defining for determining cytokinin transport, study of immunolocalization of either free cytokinin bases or their ribosylated forms may be a valuable source of information for predicting their transport in the phloem and to the roots.


Assuntos
Citocininas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triticum/metabolismo , Transporte Biológico , Isopenteniladenosina/metabolismo , Floema/metabolismo , Zeatina/metabolismo
2.
Funct Plant Biol ; 45(2): 143-149, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32291028

RESUMO

To address the involvement of abscisic acid (ABA) in regulating transpiration and root hydraulic conductivity (LpRoot) and their relative importance for maintaining leaf hydration, the ABA-deficient barley mutant Az34 and its parental wild-type (WT) genotype (cv. Steptoe) were grown in hydroponics and exposed to changes in atmospheric vapour pressure deficit (VPD) imposed by air warming. WT plants were capable of maintaining leaf water potential (ψL) that was likely due to increased LpRoot enabling higher water flow from the roots, which increased in response to air warming. The increased LpRoot and immunostaining for HvPIP2;2 aquaporins (AQPs) correlated with increased root ABA content of WT plants when exposed to increased air temperature. The failure of Az34 to maintain ψL during air warming may be due to lower LpRoot than WT plants, and an inability to respond to changes in air temperature. The correlation between root ABA content and LpRoot was further supported by increased root hydraulic conductivity in both genotypes when treated with exogenous ABA (10-5 M). Thus the ability of the root system to rapidly regulate ABA levels (and thence aquaporin abundance and hydraulic conductivity) seems important to maintain leaf hydration.

3.
J Plant Physiol ; 220: 69-73, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29149646

RESUMO

Inhibition of lettuce plant growth under increased planting density was accompanied by accumulation of abscisic acid (ABA) in the shoots of competing plants. To check causal relationship between these responses we studied the effect of decreased synthesis of ABA on growth indexes and hormonal balance of lettuce plants under elevated density of their planting (one (single) or three (competing) plants per pot). Herbicide fluridone was used to inhibit ABA synthesis. Preliminary experiments with single plants showed that presence of fluridone in the soil solution at rather low concentration (0.001mg/L) did not affect either chlorophyll content or growth rate of shoots and roots during at least one week. Treatment of competing (grouped) plants with this concentration of fluridone prevented both accumulation of ABA and competition induced growth inhibition. These results confirm important role of this hormone in the growth inhibiting effect of increased planting density. Furthermore, as in the case of ABA, fluridone prevented allocation of indoleacetic acid (IAA) to the shoots of competing plants likely contributing to leveling off the increase in the ratio of leaf area to their mass that is characteristic effect of shading in the dense plant populations. The results suggest involvement of ABA in allocation of IAA in competing plants. Application of fluridone did not influence the concentration of cytokinins in the shoots, whose level was decreased by competition either in fluridone treated or control (untreated with fluridone) plants. Accumulation of ABA in the shoots of competing plants accompanied by inhibition of their growth and the absence of either accumulation of ABA or inhibition of their growth in fluridone treated grouped plants confirms importance of ABA synthesis for growth response to competition.


Assuntos
Ácido Abscísico/metabolismo , Lactuca/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Agricultura/métodos , Herbicidas/efeitos adversos , Herbicidas/farmacologia , Densidade Demográfica , Piridonas/efeitos adversos , Piridonas/farmacologia
4.
J Exp Bot ; 66(8): 2133-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25697793

RESUMO

Changes in resource (mineral nutrients and water) availability, due to their heterogeneous distribution in space and time, affect plant development. Plants need to sense these changes to optimize growth and biomass allocation by integrating root and shoot growth. Since a limited supply of water or nutrients can elicit similar physiological responses (the relative activation of root growth at the expense of shoot growth), similar underlying mechanisms may affect perception and acquisition of either nutrients or water. This review compares root and shoot responses to availability of different macronutrients and water. Attention is given to the roles of root-to-shoot signalling and shoot-to-root signalling, with regard to coordinating changes in root and shoot growth and development. Involvement of plant hormones in regulating physiological responses such as stomatal and hydraulic conductance is revealed by measuring the effects of resource availability on phytohormone concentrations in roots and shoots, and their flow between roots and shoots in xylem and phloem saps. More specific evidence can be obtained by measuring the physiological responses of genotypes with altered hormone responses or concentrations. We discuss the similarity and diversity of changes in shoot growth, allocation to root growth, and root architecture under changes in water, nitrate, and phosphorus availability, and the possible involvement of abscisic acid, indole-acetic acid, and cytokinin in their regulation. A better understanding of these mechanisms may contribute to better crop management for efficient use of these resources and to selecting crops for improved performance under suboptimal soil conditions.


Assuntos
Minerais/metabolismo , Água/metabolismo , Meio Ambiente , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
5.
Plant Physiol Biochem ; 83: 285-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25201567

RESUMO

Phytohormone production is one mechanism by which rhizobacteria can stimulate plant growth, but it is not clear whether the bacteria gain from this mechanism. The hypothesis that microbial-derived cytokinin phytohormones stimulate root exudation of amino acids was tested. The rhizosphere of wheat plants was drenched with the synthetic cytokinin trans-zeatin or inoculated with Bacillus subtilis IB-22 (which produces zeatin type cytokinins) or B. subtilis IB-21 (which failed to accumulate cytokinins). Growing plants in a split root system allowed spatial separation of zeatin application or rhizobacterial inoculation to one compartment and analyses of amino acid release from roots (rhizodeposition) into the other compartment (without either microbial inoculation or treatment with exogenous hormone). Supplying B. subtilis IB-22 or zeatin to either the whole root system or half of the roots increased concentrations of amino acids in the soil solution although the magnitude of the increase was greater when whole roots were treated. There was some similarity in amino acid concentrations induced by either bacterial or zeatin treatment. Thus B. subtilis IB-22 increased amino acid rhizodeposition, likely due to its ability to produce cytokinins. Furthermore, B. subtilis strain IB-21, which failed to accumulate cytokinins in culture media, did not significantly affect amino acid concentrations in the wheat rhizosphere. The ability of rhizobacteria to produce cytokinins and thereby stimulate rhizodeposition may be important in enhancing rhizobacterial colonization of the rhizoplane.


Assuntos
Aminoácidos/metabolismo , Bacillus subtilis/metabolismo , Citocininas/biossíntese , Rizoma , Triticum , Rizoma/metabolismo , Rizoma/microbiologia , Triticum/metabolismo , Triticum/microbiologia
6.
J Exp Bot ; 65(9): 2287-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24692646

RESUMO

Cytokinin flow from roots to shoots can serve as a long-distance signal important for root-to-shoot communication. In the past, changes in cytokinin flow from roots to shoots have been mainly attributed to changes in the rate of synthesis or breakdown in the roots. The present research tested the possibility that active uptake of cytokinin by root cells may also influence its export to shoots. To this end, we collapsed the proton gradient across root membranes using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to inhibit secondary active uptake of exogenous and endogenous cytokinins. We report the impact of CCCP on cytokinin concentrations and delivery in xylem sap and on accumulation in shoots of 7-day-old wheat plants in the presence and absence of exogenous cytokinin applied as zeatin. Zeatin treatment increased the total accumulation of cytokinin in roots and shoots but the effect was smaller for the shoots. Immunohistochemical localization of cytokinins using zeatin-specific antibodies showed an increase in immunostaining of the cells adjacent to xylem in the roots of zeatin-treated plants. Inhibition of secondary active cytokinin uptake by CCCP application decreased cytokinin accumulation in root cells but increased both flow from the roots and accumulation in the shoots. The possible importance of secondary active uptake of cytokinins by root cells for the control of their export to the shoot is discussed.


Assuntos
Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Citocininas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triticum/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Triticum/metabolismo
7.
J Exp Bot ; 61(13): 3709-17, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20643808

RESUMO

Heat shock (HS) at 40 degrees C was given to the root system of Nicotiana tabacum wild type (WT) and to HSIPT transgenic plants transformed with the bacterial cytokinin biosynthesis gene isopentenyltransferase (ipt) cloned behind the heat shock 70 promoter from Drosophila melanogaster. HS increased cytokinin concentrations in roots and leaves of transgenic plants. The effect was smaller in WT plants and restricted to upper leaves. HS also increased the activity of the cytokinin-degrading enzyme cytokinin oxidase in leaves of transgenic plants. This suggests that increases in cytokinin concentration induced by HS were lessened but not eliminated by increases in cytokinin oxidase. Elevated levels of zeatin riboside (the main transportable form of cytokinin) were also found in the HS-treated roots. It is proposed that increases in leaves were the outcome of increased transport of this hormone from roots in the transpiration stream. In conjunction with increased leaf cytokinin concentration, HS treatment to the roots increased stomatal conductivity and transpiration in both transgenic and WT plants. Subsequently, increased transpiration depressed leaf relative water content. This, in turn, raised leaf abscisic acid (ABA) concentrations, resulting in stomatal closure. It is concluded that the preceding increases in leaf cytokinin concentration, stomatal opening, and faster transpiration resulting from the localized induction of ip gene expression in roots strengthens the concept of cytokinin involvement in root to shoot signalling.


Assuntos
Ácido Abscísico/metabolismo , Alquil e Aril Transferases , Citocininas/metabolismo , Raízes de Plantas/enzimologia , Brotos de Planta/metabolismo , Água/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Regulação da Expressão Gênica de Plantas , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Nicotiana/enzimologia , Nicotiana/genética
8.
J Plant Physiol ; 162(1): 21-6, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15700417

RESUMO

Root cooling of 7-day-old wheat seedlings decreased root hydraulic conductivity causing a gradual loss of relative water content during 45 min (RWC). Subsequently (in 60 min), RWC became partially restored due to a decrease in transpiration linked to lower stomatal conductivity. The decrease in stomatal conductivity cannot be attributed to ABA-induced stomatal closure, since no increase in ABA content in the leaves or in the concentration in xylem sap or delivery of ABA from roots was found. However, decreased stomatal conductance was associated with a sharp decline in the content of cytokinins in shoots that was registered shortly after the start of root cooling and linked to increases in the activity of cytokinin-oxidase. This decrease in shoot cytokinin content may have been responsible for closing stomata, since this hormone is known to maintain stomatal opening when applied to plants. In support of this, pre-treatment with synthetic cytokinin benzyladenine was found to increase transpiration of wheat seedlings with cooled roots and bring about visible loss of turgor and wilting.


Assuntos
Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Plântula/fisiologia , Triticum/fisiologia , Água/metabolismo , Ácido Abscísico/fisiologia , Temperatura Baixa , Citocininas/fisiologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Fatores de Tempo
9.
Plant Physiol Biochem ; 42(3): 251-5, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15051049

RESUMO

Removal of four out of five roots did not lower transpiration and stomatal conductivity of wheat (Triticum durum Desf.) seedlings. Water content of mature expanded leaf lamina remained constant at control levels. The results suggest that the only remaining root was capable to supply the shoot with water. This was evidenced by an increase in hydraulic conductivity of the root system following partial root excision measured at low subatmospheric pressures induced by vacuum. In the absence of a hydrostatic gradient, water flow from reduced root system was initially not higher than from an intact system, but increased subsequently. ABA content was increased in roots 1 h after partial root excision, which might contribute to the increase in hydraulic conductivity.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transpiração Vegetal , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Água/metabolismo , Raízes de Plantas/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Tempo
10.
J Plant Physiol ; 160(9): 1011-5, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14593801

RESUMO

Removing 4 out of 5 serminal roots from 7-day-old wheat seedlings arrested leaf elongation for 1.5 h. This effect can be explained by an initial decrease in foliar water content resulting from the smaller root surface area available for water uptake. Subsequently, leaf hydration increased with time and came to equal that of intact plants within 2 h. The rehydration was seemingly effected by an increasing conductivity of the one remaining root axis, since transpiration of the partially de-rooted plants did not fall below that of controls. With time, leaf elongation resumed, but at a slower rate than in intact plants. This slower growth may be attributed to a decrease in leaf extensibility since this was found to be reduced when measured by a counterweight technique involving linear displacement transducers. Loss of extensibility was associated with decreased IAA concentration in the leaf elongation zone.


Assuntos
Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Ácidos Indolacéticos/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA