Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Development ; 148(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34104942

RESUMO

Epithelial cilia, whether motile or primary, often display an off-center planar localization within the apical cell surface. This form of planar cell polarity (PCP) involves the asymmetric positioning of the ciliary basal body (BB). Using the monociliated epithelium of the embryonic zebrafish floor-plate, we investigated the dynamics and mechanisms of BB polarization by live imaging. BBs were highly motile, making back-and-forth movements along the antero-posterior (AP) axis and contacting both the anterior and posterior membranes. Contacts exclusively occurred at junctional Par3 patches and were often preceded by membrane digitations extending towards the BB, suggesting focused cortical pulling forces. Accordingly, BBs and Par3 patches were linked by dynamic microtubules. Later, BBs became less motile and eventually settled at posterior apical junctions enriched in Par3. BB posterior positioning followed Par3 posterior enrichment and was impaired upon Par3 depletion or disorganization of Par3 patches. In the PCP mutant vangl2, BBs were still motile but displayed poorly oriented membrane contacts that correlated with Par3 patch fragmentation and lateral spreading. Thus, we propose an unexpected function for posterior Par3 enrichment in controlling BB positioning downstream of the PCP pathway.


Assuntos
Corpos Basais/metabolismo , Proteínas de Transporte/metabolismo , Cílios/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proteínas de Transporte/genética , Polaridade Celular , Feminino , Masculino , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Transcriptoma , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Mol Biol Cell ; 32(8): 675-689, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33625872

RESUMO

A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Antígenos de Neoplasias/fisiologia , Axonema/metabolismo , Corpos Basais/metabolismo , Proteínas de Ciclo Celular/fisiologia , Centríolos/metabolismo , Cílios/fisiologia , Ciliopatias/metabolismo , Ciliopatias/fisiopatologia , Proteínas do Citoesqueleto/fisiologia , Células HEK293 , Humanos , Camundongos , Mutação , Células NIH 3T3 , Transdução de Sinais
3.
PLoS Biol ; 18(3): e3000640, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163404

RESUMO

Ciliary shedding occurs from unicellular organisms to metazoans. Although required during the cell cycle and during neurogenesis, the process remains poorly understood. In all cellular models, this phenomenon occurs distal to the transition zone (TZ), suggesting conserved molecular mechanisms. The TZ module proteins (Meckel Gruber syndrome [MKS]/Nephronophtysis [NPHP]/Centrosomal protein of 290 kDa [CEP290]/Retinitis pigmentosa GTPase regulator-Interacting Protein 1-Like Protein [RPGRIP1L]) are known to cooperate to establish TZ formation and function. To determine whether they control deciliation, we studied the function of 5 of them (Transmembrane protein 107 [TMEM107], Transmembrane protein 216 [TMEM216], CEP290, RPGRIP1L, and NPHP4) in Paramecium. All proteins are recruited to the TZ of growing cilia and localize with 9-fold symmetry at the level of the most distal part of the TZ. We demonstrate that depletion of the MKS2/TMEM216 and TMEM107 proteins induces constant deciliation of some cilia, while depletion of either NPHP4, CEP290, or RPGRIP1L prevents Ca2+/EtOH deciliation. Our results constitute the first evidence for a role of conserved TZ proteins in deciliation and open new directions for understanding motile cilia physiology.


Assuntos
Cílios/metabolismo , Paramecium tetraurellia/citologia , Proteínas de Protozoários/metabolismo , Proliferação de Células , Cílios/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Fusão de Membrana/genética , Paramecium tetraurellia/genética , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Interferência de RNA
4.
EMBO J ; 37(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29650680

RESUMO

Ciliopathies are life-threatening human diseases caused by defective cilia. They can often be traced back to mutations of genes encoding transition zone (TZ) proteins demonstrating that the understanding of TZ organisation is of paramount importance. The TZ consists of multimeric protein modules that are subject to a stringent assembly hierarchy. Previous reports place Rpgrip1l at the top of the TZ assembly hierarchy in Caenorhabditis elegans By performing quantitative immunofluorescence studies in RPGRIP1L-/- mouse embryos and human embryonic cells, we recognise a different situation in vertebrates in which Rpgrip1l deficiency affects TZ assembly in a cell type-specific manner. In cell types in which the loss of Rpgrip1l alone does not affect all modules, additional truncation or removal of vertebrate-specific Rpgrip1 results in an impairment of all modules. Consequently, Rpgrip1l and Rpgrip1 synergistically ensure the TZ composition in several vertebrate cell types, revealing a higher complexity of TZ assembly in vertebrates than in invertebrates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Cílios/fisiologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteínas/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antígenos de Neoplasias , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular , Estruturas da Membrana Celular , Células Cultivadas , Proteínas do Citoesqueleto , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia
5.
Nat Commun ; 6: 6894, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25902731

RESUMO

Caprine-like Generalized Hypoplasia Syndrome (SHGC) is an autosomal-recessive disorder in Montbéliarde cattle. Affected animals present a wide range of clinical features that include the following: delayed development with low birth weight, hind limb muscular hypoplasia, caprine-like thin head and partial coat depigmentation. Here we show that SHGC is caused by a truncating mutation in the CEP250 gene that encodes the centrosomal protein C-Nap1. This mutation results in centrosome splitting, which neither affects centriole ultrastructure and duplication in dividing cells nor centriole function in cilium assembly and mitotic spindle organization. Loss of C-Nap1-mediated centriole cohesion leads to an altered cell migration phenotype. This discovery extends the range of loci that constitute the spectrum of autosomal primary recessive microcephaly (MCPH) and Seckel-like syndromes.


Assuntos
Doenças dos Bovinos/genética , Proteínas de Ciclo Celular/genética , Movimento Celular/genética , Centríolos/metabolismo , Hipopigmentação/veterinária , Microcefalia/veterinária , Morfogênese/genética , Doenças Musculares/veterinária , Animais , Bovinos , Hipopigmentação/genética , Microcefalia/genética , Doenças Musculares/genética , Mutação , Síndrome
6.
Nat Commun ; 5: 4888, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25215410

RESUMO

Coordination of ciliary beating is essential to ensure mucus clearance in the airway tract. The orientation and synchronization of ciliary motion responds in part to the organization of the underlying cytoskeletal networks. Using electron tomography on mouse trachea, we show that basal bodies are collectively hooked at the cortex by a regular microtubule array composed of 4-5 microtubules. Removal of galectin-3, one of basal-body components, provokes misrecruitment of γ-tubulin, disorganization of this microtubule framework emanating from the basal-foot cap, together with loss of basal-body alignment and cilium orientation, defects in cilium organization and reduced fluid flow in the tracheal lumen. We conclude that galectin-3 plays a crucial role in the maintenance of the microtubule-organizing centre of the cilium and the 'pillar' microtubules, and that this network is instrumental for the coordinated orientation and stabilization of motile cilia.


Assuntos
Cílios/ultraestrutura , Galectina 3/genética , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/ultraestrutura , Mucosa Respiratória/ultraestrutura , Traqueia/ultraestrutura , Animais , Cílios/metabolismo , Galectina 3/deficiência , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mucosa Respiratória/metabolismo , Reologia , Traqueia/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
Hum Mol Genet ; 23(3): 563-77, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24067530

RESUMO

Cilia are evolutionarily conserved organelles endowed with essential physiological and developmental functions. In humans, disruption of cilia motility or signaling leads to complex pleiotropic genetic disorders called ciliopathies. Cilia motility requires the assembly of multi-subunit motile components such as dynein arms, but mechanisms underlying their assembly pathway and transport into the axoneme are still largely unknown. We identified a previously uncharacterized coiled-coil domain containing protein CCDC151, which is evolutionarily conserved in motile ciliated species and shares ancient features with the outer dynein arm-docking complex 2 of Chlamydomonas. In Drosophila, we show that CG14127/CCDC151 is associated with motile intraflagellar transport (IFT)-dependent cilia and required for geotaxis behavior of adult flies. In zebrafish, Ccdc151 is expressed in tissues with motile cilia, and morpholino-induced depletion of Ccdc151 leads to left-right asymmetry defects and kidney cysts. We demonstrate that Ccdc151 is required for proper motile function of cilia in the Kupffer's vesicle and in the pronephros by controlling dynein arm assembly, showing that Ccdc151 is a novel player in the control of IFT-dependent dynein arm assembly in animals. However, we observed that CCDC151 is also implicated in other cellular functions in vertebrates. In zebrafish, ccdc151 is involved in proper orientation of cell divisions in the pronephros and genetically interacts with prickle1 in this process. Furthermore, knockdown experiments in mammalian cells demonstrate that CCDC151 is implicated in the regulation of primary cilium length. Hence, CCDC151 is required for motile cilia function in animals but has acquired additional non-motile functions in vertebrates.


Assuntos
Cílios/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Axonema/metabolismo , Transporte Biológico , Polaridade Celular , Cílios/genética , Sequência Conservada , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Epêndima/citologia , Flagelos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Nefropatias/genética , Nefropatias/patologia , Camundongos , Filogenia , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
8.
J Cell Biol ; 198(5): 927-40, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22927466

RESUMO

Cilia are at the core of planar polarity cellular events in many systems. However, the molecular mechanisms by which they influence the polarization process are unclear. Here, we identify the function of the ciliopathy protein Rpgrip1l in planar polarity. In the mouse cochlea and in the zebrafish floor plate, Rpgrip1l was required for positioning the basal body along the planar polarity axis. Rpgrip1l was also essential for stabilizing dishevelled at the cilium base in the zebrafish floor plate and in mammalian renal cells. In rescue experiments, we showed that in the zebrafish floor plate the function of Rpgrip1l in planar polarity was mediated by dishevelled stabilization. In cultured cells, Rpgrip1l participated in a complex with inversin and nephrocystin-4, two ciliopathy proteins known to target dishevelled to the proteasome, and, in this complex, Rpgrip1l prevented dishevelled degradation. We thus uncover a ciliopathy protein complex that finely tunes dishevelled levels, thereby modulating planar cell polarity processes.


Assuntos
Polaridade Celular/fisiologia , Cílios/fisiologia , Proteínas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Cílios/metabolismo , Cóclea/metabolismo , Cóclea/fisiologia , Proteínas do Citoesqueleto , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição/metabolismo , Peixe-Zebra
9.
Hum Mol Genet ; 20(13): 2611-27, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21498478

RESUMO

Nephronophthisis is a hereditary nephropathy characterized by interstitial fibrosis and cyst formation. It is caused by mutations in NPHP genes encoding the ciliary proteins, nephrocystins. In this paper, we investigate the function of nephrocystin-4, the product of the nphp4 gene, in vivo by morpholino-mediated knockdown in zebrafish and in vitro in mammalian kidney cells. Depletion of nephrocystin-4 results in convergence and extension defects, impaired laterality, retinal anomalies and pronephric cysts associated with alterations in early cloacal morphogenesis. These defects are accompanied by abnormal ciliogenesis in the cloaca and in the laterality organ. We show that nephrocystin-4 is required for the elongation of the caudal pronephric primordium and for the regulation of cell rearrangements during cloaca morphogenesis. Moreover, depletion of either inversin, the product of the nphp2 gene, or of the Wnt-planar cell polarity (PCP) pathway component prickle2 increases the proportion of cyst formation in nphp4-depleted embryos. Nephrocystin-4 represses the Wnt-ß-catenin pathway in the zebrafish cloaca and in mammalian kidney cells in culture. In these cells, nephrocystin-4 interacts with inversin and dishevelled, and regulates dishevelled stability and subcellular localization. Our data point to a function of nephrocystin-4 in a tight regulation of the Wnt-ß-catenin and Wnt-PCP pathways, in particular during morphogenesis of the zebrafish pronephros. Moreover, they highlight common signalling functions for inversin and nephrocystin-4, suggesting that these two nephrocystins are involved in common physiopathological mechanisms.


Assuntos
Morfogênese/genética , Transdução de Sinais/genética , Proteínas Wnt/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/genética , Linhagem Celular , Cílios/genética , Cílios/patologia , Proteínas Desgrenhadas , Cães , Células HEK293 , Humanos , Mitose/genética , Fenótipo , Fosfoproteínas/metabolismo , Ligação Proteica/genética , Estabilidade Proteica , Transporte Proteico/genética , Proteínas de Peixe-Zebra/genética , beta Catenina/metabolismo
10.
Nat Genet ; 39(7): 875-81, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17558409

RESUMO

Cerebello-oculo-renal syndrome (CORS), also called Joubert syndrome type B, and Meckel (MKS) syndrome belong to the group of developmental autosomal recessive disorders that are associated with primary cilium dysfunction. Using SNP mapping, we identified missense and truncating mutations in RPGRIP1L (KIAA1005) in both CORS and MKS, and we show that inactivation of the mouse ortholog Rpgrip1l (Ftm) recapitulates the cerebral, renal and hepatic defects of CORS and MKS. In addition, we show that RPGRIP1L colocalizes at the basal body and centrosomes with the protein products of both NPHP6 and NPHP4, known genes associated with MKS, CORS and nephronophthisis (a related renal disorder and ciliopathy). In addition, the RPGRIP1L missense mutations found in CORS individuals diminishes the interaction between RPGRIP1L and nephrocystin-4. Our findings show that mutations in RPGRIP1L can cause the multiorgan phenotypic abnormalities found in CORS or MKS, which therefore represent a continuum of the same underlying disorder.


Assuntos
Doenças Cerebelares/genética , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Oftalmopatias/genética , Nefropatias/genética , Proteínas/genética , Animais , Criança , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Mutantes , Mutação Puntual , Síndrome
11.
Dev Dyn ; 235(10): 2836-44, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16881056

RESUMO

A murine cDNA encoding Protogenin, which belongs to the DCC/Neogenin family, was cloned in a screen performed to identify novel cDNAs regionally expressed in the neural plate. Isolation of the putative zebrafish orthologues allowed a comparative analysis of the expression patterns of Protogenin genes during embryogenesis in different vertebrate species. From mid-gastrulation to early somite stages, Protogenin expression is restricted to posterior neural plate and mesoderm, with an anterior limit at the level of the rhombencephalon in mouse, chicken, and zebrafish. During somitogenesis, the expression profiles in the three species share features in the neural tube but present also species-specific characteristics. The initiation of Protogenin expression just before somitogenesis and its maintenance in the neural tube and paraxial mesoderm during this process suggest a conserved role in axis elongation.


Assuntos
Vértebra Cervical Áxis/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/genética , Vertebrados/embriologia , Proteínas de Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Vértebra Cervical Áxis/metabolismo , Embrião de Galinha , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/genética , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Vertebrados/genética , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA