Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 77(3): 104-109, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047811

RESUMO

By using silver (Ag) in nanostructured (nanowire, nanosphere, etc.) or thin-layer form as a catalyst for electrochemical CO2 reduction, very high CO-forming selectivity of almost 100% can be achieved. Supported by gas diffusion layers (GDLs),  the reactant CO2 in the gas phase can approach and potentially access active Ag sites, which allows current densities in the range of a few hundred mA cm-2 to be reached. Yet, the stability of gas diffusion electrode (GDE) based electrochemical CO2-to-CO converters is far from perfect, and the activity of GDE cathodes, especially when operated at high current densities, often significantly decays during electrolyses after no more than a few hours. The primary reason of stability losses in GDE-based CO2-to-CO electrolysers is flooding: that is, the excess wetting of the GDE that prevents CO2 from reaching Ag catalytic sites. In the past years, the authors of this paper at Empa and at the University of Bern, cooperating with other partners of the National Competence Center for Research (NCCR) on Catalysis, took different approaches to overcome flooding. While opinions differ with regard to where the first line of defense in protecting GDEs from flooding should lie, a comparison of the recent results of the two groups gives unique insight into the nature of processes occurring in GDE cathodes used for CO2 electrolysis.

2.
ACS Catal ; 13(12): 8169-8182, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37342835

RESUMO

The hydrogen evolution reaction (HER) is often considered parasitic to numerous cathodic electro-transformations of high technological interest, including but not limited to metal plating (e.g., for semiconductor processing), the CO2 reduction reaction (CO2RR), the dinitrogen → ammonia conversion (N2RR), and the nitrate reduction reaction (NO3-RR). Herein, we introduce a porous Cu foam material electrodeposited onto a mesh support through the dynamic hydrogen bubble template method as an efficient catalyst for electrochemical nitrate → ammonia conversion. To take advantage of the intrinsically high surface area of this spongy foam material, effective mass transport of the nitrate reactants from the bulk electrolyte solution into its three-dimensional porous structure is critical. At high reaction rates, NO3-RR becomes, however, readily mass transport limited because of the slow nitrate diffusion into the three-dimensional porous catalyst. Herein, we demonstrate that the gas-evolving HER can mitigate the depletion of reactants inside the 3D foam catalyst through opening an additional convective nitrate mass transport pathway provided the NO3-RR becomes already mass transport limited prior to the HER onset. This pathway is achieved through the formation and release of hydrogen bubbles facilitating electrolyte replenishment inside the foam during water/nitrate co-electrolysis. This HER-mediated transport effect "boosts" the effective limiting current of nitrate reduction, as evidenced by potentiostatic electrolyses combined with an operando video inspection of the Cu-foam@mesh catalysts under operating NO3-RR conditions. Depending on the solution pH and the nitrate concentration, NO3-RR partial current densities beyond 1 A cm-2 were achieved.

3.
J Mater Chem A Mater ; 11(10): 5083-5094, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36911161

RESUMO

The application of gas diffusion electrodes (GDEs) for the electrochemical reduction of CO2 to value-added products creates the possibility of achieving current densities of a few hundred mA cm-2. To achieve stable operation at such high reaction rates remains, however, a challenging task, due to the flooding of the GDE. In order to mitigate flooding in a zero-gap membrane-electrode assembly (MEA) configuration, paths for effective electrolyte perspiration inside the GDE structure have to be kept open during the electrolysis process. Here we demonstrate that apart from the operational parameters of the electrolysis and the structural properties of the supporting gas diffusion layers, also the chemical composition of the applied catalyst inks can play a decisive role in the electrolyte management of GDEs used for CO2 electroreduction. In particular, the presence of excess amounts of polymeric capping agents (used to stabilize the catalyst nanoparticles) can lead to a blockage of micropores, which hinders perspiration and initiates the flooding of the microporous layer. Here we use a novel ICP-MS analysis-based approach to quantitatively monitor the amount of perspired electrolyte that exits a GDE-based CO2 electrolyser, and we show a direct correlation between the break-down of effective perspiration and the appearance of flooding-the latter ultimately leading to a loss of electrolyser stability. We recommend the use of an ultracentrifugation-based approach by which catalyst inks containing no excess amount of polymeric capping agents can be formulated. Using these inks, the stability of electrolyses can be ensured for much longer times.

4.
Small Methods ; 6(9): e2200369, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35810472

RESUMO

The advantage of employing gas diffusion electrodes (GDEs) in carbon dioxide reduction electrolyzers is that they allow CO2 to reach the catalyst in gaseous state, enabling current densities that are orders of magnitude larger than what is achievable in standard H-type cells. The gain in the reaction rate comes, however, at the cost of stability issues related to flooding that occurs when excess electrolyte permeates the micropores of the GDE, effectively blocking the access of CO2 to the catalyst. For electrolyzers operated with alkaline electrolytes, flooding leaves clear traces within the GDE in the form of precipitated potassium (hydrogen)carbonates. By analyzing the amount and distribution of precipitates, and by quantifying potassium salts transported through the GDE during operation (electrolyte perspiration), important information can be gained with regard to the extent and means of flooding. In this work, a novel combination of energy dispersive X-ray and inductively coupled plasma mass spectrometry based methods is employed to study flooding-related phenomena in GDEs differing in the abundance of cracks in the microporous layer. It is concluded that cracks play an important role in the electrolyte management of CO2 electrolyzers, and that electrolyte perspiration through cracks is paramount in avoiding flooding-related performance drops.

5.
Chimia (Aarau) ; 75(9): 733-743, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526178

RESUMO

In this mini-review we compare two prototypical metal foam electrocatalysts applied to the transformation of CO2 into value-added products (e.g. alcohols on Cu foams and formate on Bi foams). A substantial improvement in the catalyst performance is typically achieved through thermal annealing of the as-deposited foam materials, followed by the electro-reduction of the pre-formed oxidic precursors prior or during the actual CO2 electrolysis. Utilizing highly insightful and sensitive complementary operando analytical techniques (XAS, XRD, and Raman spectroscopy) we demonstrate that this catalyst pre-activation process is entirely accomplished in case of the oxidized Cu foams prior to the formation of hydrocarbons and alcohols from the CO2. The actually active catalyst is therefore the metallic Cu derived from the precursor by means of oxide electro-reduction. Conversely, in their oxidic form, the Cu-based foam catalysts are inactive towards the CO2 reduction reaction (denoted ec-CO2 RR). Oxidized Bi foams can be regarded as an excellent counter example to the above-mentioned Cu case as both metallic and the thermally derived oxidic Bi foams are highly active towards ec-CO2 RR (formate production). Indeed, operando Raman spectroscopy reveals that CO2 electrolysis occurs upon its embedment into the oxidic Bi2O3 foam precursor, which itself undergoes partial transformation into an active sub-carbonate phase. The potential-dependent transition of sub-carbonates/oxides into the corresponding metallic Bi foam dictates the characteristic changes of the ec-CO2 RR pathway. Identical location (IL) microscopic inspection of the catalyst materials, e.g. by means of scanning electron microscopy, demonstrates substantial morphological alterations on the nm length scale on the material surface as consequence of the sub-carbonate formation and the potential-driven oxide reduction into the metallic Bi foam. The foam morphology on a mesoscopic length scale (macroporosity) remains, by contrast, fully unaffected by these phase transitions.

6.
Chimia (Aarau) ; 75(3): 163-168, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33766198

RESUMO

Metallic nanoparticles of different shape can be used as efficient electrocatalysts for many technologically and environmentally relevant processes, like the electroreduction of CO2. Intense research is thus targeted at finding the morphology of nanosized features that best suits catalytic needs. In order to control the shape and size distribution of the designed nanoobjects, and to prevent their aggregation, synthesis routes often rely on the use of organic capping agents (surfactants). It is known, however, that these agents tend to remain adsorbed on the surface of the synthesized nanoparticles and may significantly impair their catalytic performance, both in terms of overall yield and of product selectivity. It thus became a standard procedure to apply certain methods (e.g. involving UV-ozone or plasma treatments) for the removal of capping agents from the surface of nanoparticles, before they are used as catalysts. Proper design of the operating procedure of the electrocatalysis process may, however, render such cleaning steps unnecessary. In this paper we use poly-vinylpyrrolidone (PVP) capped Ag nanocubes to demonstrate a mere electrochemical, operando activation method. The proposed method is based on an observed hysteresis of the catalytic yield of CO (the desired product of CO2 electroreduction) as a function of the applied potential. When as-synthesized nanocubes were directly used for CO2 electroreduction, the CO yield was rather low at moderate overpotentials. However, following a potential excursion to more negative potentials, most of the (blocking) PVP was irreversibly removed from the catalyst surface, allowing a significantly higher catalytic yield even under less harsh operating conditions. The described hysteresis of the product distribution is shown to be of transient nature, and following operando activation by a single 'break-in' cycle, a truly efficient catalyst was obtained that retained its stability during long hours of operation.

7.
Anal Chem ; 92(6): 4301-4308, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32081004

RESUMO

The use of rotating disk electrodes (RDEs) is probably the most convenient way of studying simple electrode reactions under well-defined transport conditions. Standard RDEs become, however, less expedient when the studied electrode process is a complex one, leading to the formation of various reaction products. In these cases, the accurate detection and quantification of the formed products are desirable. If the formed products are gaseous, then the usual way of quantifying them is the use of online gas chromatography (GC), a method that is not compatible with open RDE cells. In order to overcome these difficulties, we present here a sophisticated inverted RDE (iRDE) cell design. The design combines various advantages: it is amenable to the same mathematical treatment as standard (downward-facing) RDEs; it can be operated airtight and coupled to online GC; and due to its upward-facing design, the electrode surface is less prone to blockage by any formed gas bubbles. The iRDE&GC design is tested using simple model reactions and is demonstratively used for studying the electrochemical reduction of CO2, accompanied by parasitic hydrogen evolution, on a silver electrode.

8.
Sci Rep ; 8(1): 8601, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872230

RESUMO

The interaction of osseous tissue with electric fields is an important subject. The electrical stimulation of bone promotes osteogenesis, while bone impedance has been proposed as a measure of osteoporosis, to follow fracture healing, or as a method to improve safety of surgical procedures. However, a deeper understanding of the electrical properties of bone and their relation to the architecture of osseous tissue is required to extend the range of use of electrical measurements to clinical studies. In this paper we apply electrical impedance spectroscopy to study the conductivity of fresh bovine tibia and we correlate the measured conductivities with its structural properties. Impedance was measured using a custom-made cell and a potentiostat. Bone conductivity was determined at 100 kHz, where the phase shift was negligible. A good agreement (R2 = 0.83) was found between the measured conductivity and the bone volume fraction, determined on microCT images. Based on this relationship, an equivalent circuit model was created for bone samples. The results of this ex-vivo study are comparable to previous in-vivo observations reporting bone resistivity as a function of bone density. This information can be used to construct a map of the tissue resistivity directly derived from clinical images.


Assuntos
Condutividade Elétrica , Tíbia/anatomia & histologia , Animais , Biomassa , Bovinos , Correlação de Dados , Espectroscopia Dielétrica , Microtomografia por Raio-X
9.
Chemphyschem ; 18(22): 3153-3162, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28872751

RESUMO

Room-temperature ionic liquids (RTILs) are promising new electrolytes for efficient carbon dioxide reduction. However, due to their high viscosity, the mass transport of CO2 in RTILs is typically slow, at least one order of magnitude slower than in aqueous systems. One possibility to improve mass transport in RTILs is to decrease their viscosity through dilution with water. Herein, defined amounts of water are added to 1-butyl-3methylimidazolium tetrafluoroborate ([BMIm][BF4 ]), which is a hydrophilic RTIL. Electrochemical measurements on quiescent and hydrodynamic systems both indicate enhanced CO2 electroreduction. This enhancement has its origin in thermodynamic/kinetic effects (the addition of water increases the availability of H+ , which is a reaction partner of CO2 electroreduction) and in an increased rate of transport due to lower viscosity. Electrochemically determined diffusion coefficients for CO2 in [BMIm][BF4 ]/water systems agree well with values determined by NMR spectroscopy.

10.
J Am Chem Soc ; 136(52): 17922-5, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25494539

RESUMO

Controlling charge transport through a single molecule connected to metallic electrodes remains one of the most fundamental challenges of nanoelectronics. Here we use electrochemical gating to reversibly tune the conductance of two different organic molecules, both containing anthraquinone (AQ) centers, over >1 order of magnitude. For electrode potentials outside the redox-active region, the effect of the gate is simply to shift the molecular energy levels relative to the metal Fermi level. At the redox potential, the conductance changes abruptly as the AQ unit is oxidized/reduced with an accompanying change in the conjugation pattern between linear and cross conjugation. The most significant change in conductance is observed when the electron pathway connecting the two electrodes is via the AQ unit. This is consistent with the expected occurrence of destructive quantum interference in that case. The experimental results are supported by an excellent agreement with ab initio transport calculations.

11.
Acta Chim Slov ; 61(2): 223-32, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25125104

RESUMO

Using the LabVIEW™ graphical programming language designed by National Instruments®, a digital simulation model has been developed in order to describe electrochemical processes occurring at rotating ring-disk electrodes. The model allows for taking into consideration independent potential control of the two working electrodes, homogeneous electrode reactions, as well as spatial inhomogeneities of the working electrode surfaces. The main programming concepts, as well as the operation of the simulation software is presented. Several test simulations have been carried out in order to evaluate the accuracy of the calculations.


Assuntos
Eletroquímica/instrumentação , Modelos Químicos , Rotação , Eletrodos , Cinética , Software , Propriedades de Superfície
12.
Acta Chim Slov ; 61(2): 233-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25125105

RESUMO

The reduction of perchlorate ions at ruthenium electrodes was investigated by voltammetry, chronoamperometry, impedance spectroscopy, and by measuring changes of interfacial stress changes using the cantilever bending method as functions of electrode potential, and concentrations of perchloric acid and HCl. The cyclic voltammograms recorded at a rotating (Ru) disc electrode were highly asymmetric with respect to the electrode potential axis, and a negative current could be observed even during the positive sweep. Chloride ions decrease the interfacial stress and exert an inhibiting effect on the reduction process indicating the role of competitive adsorption. The desorption rate of Cl(-) depends strongly on the hydrodynamic conditions, probably through desorption/diffusion coupling. These results serve as a warning that in perchlorate-containing solutions in contact with Ru the adsorption of chloride ions may also influence the rate of other electrochemical processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA