Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Water Res ; 235: 119748, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36944303

RESUMO

Photogranules are a novel wastewater treatment technology that can utilize the sun's energy to treat water with lower energy input and have great potential for nutrient recovery applications. They have been proven to efficiently remove nitrogen and carbon but show lower conversion rates for phosphorus compared to established treatment systems, such as aerobic granular sludge. In this study, we successfully introduced polyphosphate accumulating organisms (PAOs) to an established photogranular culture. We operated photobioreactors in sequencing batch mode with six cycles per day and alternating anaerobic (dark) and aerobic (light) phases. We were able to increase phosphorus removal/recovery by 6 times from 5.4 to 30 mg/L/d while maintaining similar nitrogen and carbon removal compared to photogranules without PAOs. To maintain PAOs activity, alternating anaerobic feast and aerobic famine conditions were required. In future applications, where aerobic conditions are dependent on in-situ oxygenation via photosynthesis, the process will rely on sunlight availability. Therefore, we investigated the feasibility of the process under diurnal cycles with a 12-h anaerobic phase during nighttime and six short cycles during the 12 h daytime. The 12-h anaerobic phase had no adverse effect on the PAOs and phototrophs. Due to the extension of one anaerobic phase to 12 h the six aerobic phases were shortened by 47% and consequently decreased the light hours per day. This resulted in a decrease of phototrophs, which reduced nitrogen removal and biomass productivity up to 30%. Finally, we discuss and suggest strategies to apply PAO-enriched photogranules at large-scale.


Assuntos
Fósforo , Polifosfatos , Reatores Biológicos , Esgotos , Fotobiorreatores , Carbono , Nitrogênio
2.
ISME J ; 17(6): 870-879, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997724

RESUMO

Photogranules are spherical aggregates formed of complex phototrophic ecosystems with potential for "aeration-free" wastewater treatment. Photogranules from a sequencing batch reactor were investigated by fluorescence microscopy, 16S/18S rRNA gene amplicon sequencing, microsensors, and stable- and radioisotope incubations to determine the granules' composition, nutrient distribution, and light, carbon, and nitrogen budgets. The photogranules were biologically and chemically stratified, with filamentous cyanobacteria arranged in discrete layers and forming a scaffold to which other organisms were attached. Oxygen, nitrate, and light gradients were also detectable. Photosynthetic activity and nitrification were both predominantly restricted to the outer 500 µm, but while photosynthesis was relatively insensitive to the oxygen and nutrient (ammonium, phosphate, acetate) concentrations tested, nitrification was highly sensitive. Oxygen was cycled internally, with oxygen produced through photosynthesis rapidly consumed by aerobic respiration and nitrification. Oxygen production and consumption were well balanced. Similarly, nitrogen was cycled through paired nitrification and denitrification, and carbon was exchanged through photosynthesis and respiration. Our findings highlight that photogranules are complete, complex ecosystems with multiple linked nutrient cycles and will aid engineering decisions in photogranular wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Ecossistema , Reatores Biológicos , Nitrificação , Oxigênio , Nitrogênio , Carbono , Desnitrificação , Esgotos
3.
Biotechnol Bioeng ; 120(5): 1303-1315, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779371

RESUMO

Wastewater characteristics can vary significantly, and in some municipal wastewaters the N:P ratio is as low as 5 resulting in nitrogen-limiting conditions. In this study, the microbial community, function, and morphology of photogranules under nitrogen-replete (N+) and limiting (N-) conditions was assessed in sequencing batch reactors. Photogranules under N- condition were nitrogen deprived 2/3 of a batch cycle duration. Surprisingly, this nitrogen limitation had no adverse effect on biomass productivity. Moreover, phosphorus and chemical oxygen demand removal were similar to their removal under N+ conditions. Although performance was similar, the difference in granule morphology was obvious. While N+ photogranules were dense and structurally confined, N- photogranules showed loose structures with occasional voids. Microbial community analysis revealed high abundance of cyanobacteria capable of N2 -fixation. These were higher at N- (38%) than N+ (29%) treatments, showing that photogranules could adjust and maintain treatment performance and high biomass productivity by means of N2 -fixation.


Assuntos
Cianobactérias , Águas Residuárias , Nitrogênio , Biomassa , Fósforo , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos/métodos
4.
Behav Ecol ; 32(5): 952-960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690548

RESUMO

Animals can alter their foraging behavior through associative learning, where an encounter with an essential resource (e.g., food or a reproductive opportunity) is associated with nearby environmental cues (e.g., volatiles). This can subsequently improve the animal's foraging efficiency. However, when these associated cues are encountered again, the anticipated resource is not always present. Such an unrewarding experience, also called a memory-extinction experience, can change an animal's response to the associated cues. Although some studies are available on the mechanisms of this process, they rarely focus on cues and rewards that are relevant in an animal's natural habitat. In this study, we tested the effect of different types of ecologically relevant memory-extinction experiences on the conditioned plant volatile preferences of the parasitic wasp Cotesia glomerata that uses these cues to locate its caterpillar hosts. These extinction experiences consisted of contact with only host traces (frass and silk), contact with nonhost traces, or oviposition in a nonhost near host traces, on the conditioned plant species. Our results show that the lack of oviposition, after contacting host traces, led to the temporary alteration of the conditioned plant volatile preference in C. glomerata, but this effect was plant species-specific. These results provide novel insights into how ecologically relevant memory-extinction experiences can fine-tune an animal's foraging behavior. This fine-tuning of learned behavior can be beneficial when the lack of finding a resource accurately predicts current, but not future foraging opportunities. Such continuous reevaluation of obtained information helps animals to prevent maladaptive foraging behavior.

6.
J Anim Ecol ; 90(7): 1635-1646, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33724445

RESUMO

Dynamic conditions in nature have led to the evolution of behavioural traits that allow animals to use information on local circumstances and adjust their behaviour accordingly, for example through learning. Although learning can improve foraging efficiency, the learned information can become unreliable as the environment continues to change. This could lead to potential fitness costs when memories holding such unreliable information persist. Indeed, persistent unreliable memory was found to reduce the foraging efficiency of the parasitoid Cotesia glomerata under laboratory conditions. Here, we evaluated the effect of such persistent unreliable memory on the foraging behaviour of C. glomerata in the field. This is a critical step in studies of foraging theory, since animal behaviour evolved under the complex conditions present in nature. Existing methods provide little detail on how parasitoids interact with their environment in the field, therefore we developed a novel multi-camera system that allowed us to trace parasitoid foraging behaviour in detail. With this multi-camera system, we studied how persistent unreliable memory affected the foraging behaviour of C. glomerata when these memories led parasitoids to plants infested with non-host caterpillars in a semi-field set-up. Our results demonstrate that persistent unreliable memory can lead to maladaptive foraging behaviour in C. glomerata under field conditions and increased the likelihood of oviposition in the non-host caterpillar Mamestra brassica. Furthermore, these time- and egg-related costs can be context dependent, since they rely on the plant species used. These results provide us with new insight on how animals use previously obtained information in naturally complex and dynamic foraging situations and confirm that costs and benefits of learning depend on the environment animals forage in. Although behavioural studies of small animals in natural habitats remain challenging, novel methods such as our multi-camera system contribute to understanding the nuances of animal foraging behaviour.


Assuntos
Mariposas , Vespas , Animais , Feminino , Interações Hospedeiro-Parasita , Larva , Oviposição
7.
Commun Biol ; 4(1): 104, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483589

RESUMO

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Assuntos
Evolução Biológica , Cromossomos de Insetos , Genoma de Inseto , Polydnaviridae/genética , Vespas/genética , Animais , Sequência de Bases , Sequência Conservada , Nudiviridae/genética , Receptores Odorantes/genética , Olfato , Simbiose , Sintenia , Vespas/virologia
8.
Biol Rev Camb Philos Soc ; 95(6): 1838-1854, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32794644

RESUMO

Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Next, the genes or markers linked to these traits need be determined, including how to implement this information into a selective breeding program. Choosing a trait can be assisted by modelling to account for the proper agro-ecological context, and by knowing which traits have sufficiently high heritability values. We provide guidelines for designing genomic strategies in biocontrol programs, which depend on the organism, budget, and desired objective. Genomic approaches start with genome sequencing and assembly. We provide a guide for deciding the most successful sequencing strategy for biocontrol agents. Gene discovery involves quantitative trait loci analyses, transcriptomic and proteomic studies, and gene editing. Improving biocontrol practices includes marker-assisted selection, genomic selection and microbiome manipulation of biocontrol agents, and monitoring for genetic variation during rearing and post-release. We conclude by identifying the most promising applications of genetic and genomic methods to improve biological control efficacy.


Assuntos
Comércio , Proteômica , Genômica , Internacionalidade , Locos de Características Quantitativas
9.
Microorganisms ; 9(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396683

RESUMO

Wastewater is considered a renewable resource water and energy. An advantage of decentralized sanitation systems is the separation of the blackwater (BW) stream, contaminated with human pathogens, from the remaining household water. However, the composition and functions of the microbial community in BW are not known. In this study, we used shotgun metagenomics to assess the dynamics of microbial community structure and function throughout a new BW anaerobic digestion system installed at The Netherlands Institute of Ecology. Samples from the influent (BW), primary effluent (anaerobic digested BW), sludge and final effluent of the pilot upflow anaerobic sludge blanket (UASB) reactor and microalgae pilot tubular photobioreactor (PBR) were analyzed. Our results showed a decrease in microbial richness and diversity followed by a decrease in functional complexity and co-occurrence along the different modules of the bioreactor. The microbial diversity and function decrease were reflected both changes in substrate composition and wash conditions. Our wastewater treatment system also decreased microbial functions related to pathogenesis. In summary, the new sanitation system studied here fosters microbial groups and functions that allow the system to efficiently and robustly recover carbon and nutrients while reducing pathogenic groups, ultimately generating a final effluent safe for discharge and reuse.

10.
J Neurosci Methods ; 309: 208-217, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30227145

RESUMO

BACKGROUND: Insects are important models to study learning and memory formation in both an ecological and neuroscience context due to their small size, behavioral flexibility and ecological diversity. Measuring memory retention is often done through simple time-consuming set-ups, producing only a single parameter for conditioned behavior. We wished to obtain higher sample sizes with fewer individuals to measure olfactory memory retention more efficiently. NEW METHOD: The high-throughput individual T-maze uses commercially available tracking software, Ethovision XT®, in combination with a Perspex stack of plates as small as 18 × 18 cm, which accommodates 36 olfactory T-mazes, where each individual wasp could choose between two artificial odors. Various behavioral parameters, relevant to memory retention, were acquired in this set-up; first choice, residence time, giving up time and zone entries. From these parameters a performance index was calculated as a measure of memory retention. Groups of 36 wasps were simultaneously tested within minutes, resulting in efficient acquisition of sufficiently high sample sizes. RESULTS: This system was tested with two very different parasitic wasp species, the larval parasitoid Cotesia glomerata and the pupal parasitoid Nasonia vitripennis, and has proven to be highly suitable for testing memory retention in both these species. COMPARISON WITH EXISTING METHODS: Unlike other bioassays, this system allows for both high-throughput and recording of detailed individual behavior. CONCLUSIONS: The high-throughput individual T-maze provides us with a standardized high-throughput, labor-efficient and cost-effective method to test various kinds of behavior, offering excellent opportunities for comparative studies of various aspects of insect behavior.


Assuntos
Comportamento Animal , Aprendizagem em Labirinto , Memória , Reconhecimento Automatizado de Padrão/métodos , Vespas , Animais , Condicionamento Clássico , Feminino , Odorantes , Percepção Olfatória
11.
Front Behav Neurosci ; 9: 255, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26557061

RESUMO

Even though learning and memory are universal traits in the Animal Kingdom, closely related species reveal substantial variation in learning rate and memory dynamics. To determine the genetic background of this natural variation, we studied two congeneric parasitic wasp species, Cotesia glomerata and C. rubecula, which lay their eggs in caterpillars of the large and small cabbage white butterfly. A successful egg laying event serves as an unconditioned stimulus (US) in a classical conditioning paradigm, where plant odors become associated with the encounter of a suitable host caterpillar. Depending on the host species, the number of conditioning trials and the parasitic wasp species, three different types of transcription-dependent long-term memory (LTM) and one type of transcription-independent, anesthesia-resistant memory (ARM) can be distinguished. To identify transcripts underlying these differences in memory formation, we isolated mRNA from parasitic wasp heads at three different time points between induction and consolidation of each of the four memory types, and for each sample three biological replicates, where after strand-specific paired-end 100 bp deep sequencing. Transcriptomes were assembled de novo and differential expression was determined for each memory type and time point after conditioning, compared to unconditioned wasps. Most differentially expressed (DE) genes and antisense transcripts were only DE in one of the LTM types. Among the DE genes that were DE in two or more LTM types, were many protein kinases and phosphatases, small GTPases, receptors and ion channels. Some genes were DE in opposing directions between any of the LTM memory types and ARM, suggesting that ARM in Cotesia requires the transcription of genes inhibiting LTM or vice versa. We discuss our findings in the context of neuronal functioning, including RNA splicing and transport, epigenetic regulation, neurotransmitter/peptide synthesis and antisense transcription. In conclusion, these brain transcriptomes provide candidate genes that may be involved in the observed natural variation in LTM in closely related Cotesia parasitic wasp species.

12.
Environ Sci Technol ; 49(20): 12450-6, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26389714

RESUMO

This study demonstrates that microalgae can effectively recover all P and N from anaerobically treated black water (toilet wastewater). Thus, enabling the removal of nutrients from the black water and the generation of a valuable algae product in one step. Screening experiments with green microalgae and cyanobacteria showed that all tested green microalgae species successfully grew on anaerobically treated black water. In a subsequent controlled experiment in flat-panel photobioreactors, Chlorella sorokiniana was able to remove 100% of the phosphorus and nitrogen from the medium. Phosphorus was depleted within 4 days while nitrogen took 12 days to reach depletion. The phosphorus and nitrogen removal rates during the initial linear growth phase were 17 and 122 mg·L(-1)·d(-1), respectively. After this initial phase, the phosphorus was depleted. The nitrogen removal rate continued to decrease in the second phase, resulting in an overall removal rate of 80 mg·L(-1)·d(-1). The biomass concentration at the end of the experiment was 11.5 g·L(-1), with a P content of approximately 1% and a N content of 7.6%. This high algal biomass concentration, together with a relatively short P recovery time, is a promising finding for future post-treatment of black water while gaining valuable algal biomass for further application.


Assuntos
Chlorella , Microalgas , Nitrogênio/metabolismo , Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Biomassa , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Fotobiorreatores , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química
13.
BMC Genomics ; 16: 162, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25888126

RESUMO

BACKGROUND: Cellular processes underlying memory formation are evolutionary conserved, but natural variation in memory dynamics between animal species or populations is common. The genetic basis of this fascinating phenomenon is poorly understood. Closely related species of Nasonia parasitic wasps differ in long-term memory (LTM) formation: N. vitripennis will form transcription-dependent LTM after a single conditioning trial, whereas the closely-related species N. giraulti will not. Genes that were differentially expressed (DE) after conditioning in N. vitripennis, but not in N. giraulti, were identified as candidate genes that may regulate LTM formation. RESULTS: RNA was collected from heads of both species before and immediately, 4 or 24 hours after conditioning, with 3 replicates per time point. It was sequenced strand-specifically, which allows distinguishing sense from antisense transcripts and improves the quality of expression analyses. We determined conditioning-induced DE compared to naïve controls for both species. These expression patterns were then analysed with GO enrichment analyses for each species and time point, which demonstrated an enrichment of signalling-related genes immediately after conditioning in N. vitripennis only. Analyses of known LTM genes and genes with an opposing expression pattern between the two species revealed additional candidate genes for the difference in LTM formation. These include genes from various signalling cascades, including several members of the Ras and PI3 kinase signalling pathways, and glutamate receptors. Interestingly, several other known LTM genes were exclusively differentially expressed in N. giraulti, which may indicate an LTM-inhibitory mechanism. Among the DE transcripts were also antisense transcripts. Furthermore, antisense transcripts aligning to a number of known memory genes were detected, which may have a role in regulating these genes. CONCLUSION: This study is the first to describe and compare expression patterns of both protein-coding and antisense transcripts, at different time points after conditioning, of two closely related animal species that differ in LTM formation. Several candidate genes that may regulate differences in LTM have been identified. This transcriptome analysis is a valuable resource for future in-depth studies to elucidate the role of candidate genes and antisense transcription in natural variation in LTM formation.


Assuntos
Encéfalo/metabolismo , Himenópteros/genética , Memória de Longo Prazo/fisiologia , Odorantes , Transcriptoma , Processamento Alternativo , Animais , Feminino , Aromatizantes/farmacologia , Himenópteros/metabolismo , Memória de Longo Prazo/efeitos dos fármacos , Oligorribonucleotídeos Antissenso/metabolismo , RNA/análise , RNA/isolamento & purificação , RNA/metabolismo , Interferência de RNA , RNA Longo não Codificante/análise , RNA Longo não Codificante/isolamento & purificação , RNA Longo não Codificante/metabolismo , Análise de Sequência de RNA
14.
New Phytol ; 204(4): 989-99, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25138432

RESUMO

Although plant-herbivore-enemy interactions have been studied extensively in cross-continental plant invasions, little is known about intra-continental range expanders, despite their rapid spread globally. Using an ecological and metabolomics approach, we compared the insect performance of a generalist and specialist herbivore and a parasitoid, as well as plant defence traits, among native, exotic invasive and exotic non-invasive populations of the Turkish rocket, Bunias orientalis, a range-expanding species across parts of Eurasia. In the glasshouse, the generalist herbivore, Mamestra brassicae, and its parasitoid, Microplitis mediator, performed better on non-native than on native plant populations. Insect performance did not differ between the two non-native origins. By contrast, the specialist herbivore, Pieris brassicae, developed poorly on all populations. Differences in trichome densities and in the metabolome, particularly in the family-specific secondary metabolites (i.e. glucosinolates), may explain population-related variation in the performance of the generalist herbivore and its parasitoid. Total glucosinolate concentrations were significantly induced by herbivory, particularly in native populations. Native populations of B. orientalis are generally better defended than non-native populations. The role of insect herbivores and dietary specialization as a selection force on defence traits in the range-expanding B. orientalis is discussed.


Assuntos
Brassicaceae/fisiologia , Herbivoria/fisiologia , Himenópteros , Folhas de Planta/metabolismo , Animais , Borboletas , Ecossistema , Comportamento Alimentar , Glucosinolatos/metabolismo , Espécies Introduzidas , Larva , Mariposas/parasitologia , Folhas de Planta/química , Folhas de Planta/fisiologia , Plantas Daninhas/fisiologia
15.
Mol Ecol ; 22(24): 6179-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24219759

RESUMO

Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore-induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up-regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.


Assuntos
Herbivoria , Himenópteros/fisiologia , Lepidópteros/fisiologia , Mostardeira/química , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/química , Animais , Ciclopentanos/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Especificidade de Hospedeiro , Larva/fisiologia , Lepidópteros/parasitologia , Mostardeira/genética , Oxilipinas/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Spodoptera/parasitologia
16.
Pest Manag Sci ; 69(2): 302-11, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22933413

RESUMO

BACKGROUND: Most insect-resistant transgenic crops employ toxins to control pests. A novel approach is to enhance the effectiveness of natural enemies by genetic engineering of the biosynthesis of volatile organic compounds (VOCs). Before the commercialisation of such transgenic plants can be pursued, detailed fundamental studies of their effects on herbivores and their natural enemies are necessary. The linalool/nerolidol synthase gene FaNES1 was constitutively expressed from strawberry in three Arabidopsis thaliana accessions, and the behaviour of the aphid Brevicoryne brassicae L., the parasitoid Diaeretiella rapae McIntosh and the predator Episyrphus balteatus de Geer was studied. RESULTS: Transgenic FaNES1-expressing plants emitted (E)-nerolidol and larger amounts of (E)-DMNT and linalool. Brevicoryne brassicae was repelled by the transgenic lines of two of the accessions, whereas its performance was not affected. Diaeretiella rapae preferred aphid-infested transgenic plants over aphid-infested wild-type plants for two of the accessions. In contrast, female E. balteatus predators did not differentiate between aphid-infested transgenic or wild-type plants. CONCLUSION: The results indicate that the genetic engineering of plants to modify their emission of VOCs holds considerable promise for facilitating biological control of herbivores. Validation for crop plants is a necessary next step to assess the usefulness of modified volatile emission in integrated pest management.


Assuntos
Afídeos/fisiologia , Arabidopsis/metabolismo , Herbivoria/fisiologia , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/metabolismo , Terpenos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Afídeos/parasitologia , Arabidopsis/genética , Arabidopsis/parasitologia , Dípteros/fisiologia , Feminino , Fragaria/enzimologia , Fragaria/genética , Engenharia Genética , Hidroliases/genética , Hidroliases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Vespas/fisiologia
17.
Plant Cell Environ ; 36(3): 528-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22889298

RESUMO

While nectaries are commonly found in flowers, some plants also form extrafloral nectaries on stems or leaves. For the first time in the family Brassicaceae, here we report extrafloral nectaries in Brassica juncea. The extrafloral nectar (EFN) was secreted from previously amorphic sites on stems, flowering stalks and leaf axils from the onset of flowering until silique formation. Transverse sections at the point of nectar secretion revealed a pocket-like structure whose opening was surrounded by modified stomatal guard cells. The EFN droplets were viscous and up to 50% of the total weight was sugars, 97% of which was sucrose in the five varieties of B. juncea examined. Threonine, glutamine, arginine and glutamate were the most abundant amino acids. EFN droplets also contained glucosinolates, mainly gluconapin and sinigrin. Nectar secretion was increased when the plants were damaged by chewing above- and belowground herbivores and sap-sucking aphids. Parasitoids of each herbivore species were tested for their preference, of which three parasitoids preferred EFN and sucrose solutions over water. Moreover, the survival and fecundity of parasitoids were positively affected by feeding on EFN. We conclude that EFN production in B. juncea may contribute to the indirect defence of this plant species.


Assuntos
Herbivoria , Interações Hospedeiro-Parasita , Insetos/fisiologia , Mostardeira/fisiologia , Néctar de Plantas/fisiologia , Animais , Feminino , Fertilidade , Insetos/parasitologia , Mostardeira/anatomia & histologia , Mostardeira/química , Néctar de Plantas/química
18.
PLoS Biol ; 10(11): e1001435, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209379

RESUMO

Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids.


Assuntos
Brassica/química , Borboletas/parasitologia , Herbivoria , Compostos Orgânicos Voláteis/química , Vespas/fisiologia , Animais , Tamanho Corporal , Brassica/fisiologia , Borboletas/fisiologia , Tamanho da Ninhada , Ecossistema , Feminino , Larva/fisiologia , Masculino , Odorantes , Oviposição , Especificidade da Espécie , Volatilização
19.
PLoS One ; 7(8): e39615, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22936971

RESUMO

Animals can store learned information in their brains through a series of distinct memory forms. Short-lasting memory forms can be followed by longer-lasting, consolidated memory forms. However, the factors determining variation in memory consolidation encountered in nature have thus far not been fully elucidated. Here, we show that two parasitic wasp species belonging to different families, Cotesia glomerata (Hymenoptera: Braconidae) and Trichogramma evanescens (Hymenoptera; Trichogrammatidae), similarly adjust the memory form they consolidate to a fitness-determining reward: egg-laying into a host-insect that serves as food for their offspring. Protein synthesis-dependent long-term memory (LTM) was consolidated after single-trial conditioning with a high-value host. However, single-trial conditioning with a low-value host induced consolidation of a shorter-lasting memory form. For Cotesia glomerata, we subsequently identified this shorter-lasting memory form as anesthesia-resistant memory (ARM) because it was not sensitive to protein synthesis inhibitors or anesthesia. Associative conditioning using a single reward of different value thus induced a physiologically different mechanism of memory formation in this species. We conclude that the memory form that is consolidated does not only change in response to relatively large differences in conditioning, such as the number and type of conditioning trials, but is also sensitive to more subtle differences, such as reward value. Reward-dependent consolidation of exclusive ARM or LTM provides excellent opportunities for within-species comparison of mechanisms underlying memory consolidation.


Assuntos
Aprendizagem , Memória/fisiologia , Recompensa , Vespas/fisiologia , Animais , Memória de Longo Prazo/fisiologia
20.
J Insect Physiol ; 58(11): 1463-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22939901

RESUMO

Parasitoid wasps are model organisms for exploring constraints on life history and development strategies in arthropods. Koinobiont parasitoids attack hosts that may vary considerably in size at parasitation. Thus far, studies exploring koinobiont development in hosts of different size have been exclusively done with primary parasitoids attacking insect herbivores. However, the larvae of primary koinobiont parasitoids may in turn be attacked by koinobiont hyperparasitoids. We examined development of the gregarious hyperparasitoid Baryscapus galactopus in different stages of its primary parasitoid host, Cotesia glomerata, itself developing in different stages of caterpillars of the cabbage butterfly, Pieris brassicae. This is the first study exploring hyperparasitoid development in different stages of a primary and secondary host. Second instar (L2) larvae of P. brassicae were parasitized by C. glomerata, and separate cohorts of L3 to L5 P. brassicae containing different stages of C. glomerata were then presented to B. galactopus females. B. galactopus was able to parasitize tiny larvae of C. glomerata in L3 caterpillars of P. brassicae, but hyperparasitism efficiency increased in later instars of both C. glomerata and P. brassicae. Development time of B. galactopus was extended in younger C. glomerata/P. brassicae hosts, whereas adult mass was largest when C. glomerata was attacked in L3 through early L5 P. brassicae. Our results show that B. galactopus adjusts its development rate in accordance with the size of both its primary and secondary hosts, in order to ensure survival. Adaptive responses to phylogenetic constraints on the development of primary hyperparasitoids are discussed.


Assuntos
Borboletas/parasitologia , Cadeia Alimentar , Interações Hospedeiro-Patógeno , Vespas/crescimento & desenvolvimento , Animais , Feminino , Larva/crescimento & desenvolvimento , Masculino , Vespas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA