Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984492

RESUMO

A novel Ta/Os heterobimetallic complex, [Ta(CH2tBu)3(µ-H)3OsCp*], 2, is prepared by protonolysis of Ta(CHtBu)(CH2tBu)3 with Cp*OsH5. Treatment of 2 and its iridium analogue [Ta(CH2tBu)3(µ-H)2IrCp*], 1, with CO2 under mild conditions reveal the efficient cleavage of CO2, driven by the formation of a tantalum oxo species in conjunction with CO transfer to the osmium or iridium fragments, to form Cp*Ir(CO)H2 and Cp*Os(CO)H3, respectively. This bimetallic reactivity diverges from more classical CO2 insertion into metal-X (X = metal, hydride, alkyl) bonds.

2.
J Am Chem Soc ; 146(27): 18306-18319, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38936814

RESUMO

A salt metathesis synthetic strategy is used to access rare tantalum/coinage metal (Cu, Ag, Au) heterobimetallic complexes. Specifically, complex [Li(THF)2][Ta(CtBu)(CH2tBu)3], 1, reacts with (IPr)MCl (M = Cu, Ag, Au, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) to afford the alkylidyne-bridged species [Ta(CH2tBu)3(µ-CtBu)M(IPr)] 2-M. Interestingly, π-bonding of group 11 metals to the Ta─C moiety promotes a rare alkylidyne alkyl to bis-alkylidene tautomerism, in which compounds 2-M are in equilibrium with [Ta(CHtBu)(CH2tBu)2(µ-CHtBu)M(IPr)] 3-M. This equilibrium was studied in detail using NMR spectroscopy and computational studies. This reveals that the equilibrium position is strongly dependent on the nature of the coinage metal going down the group 11 triad, thus offering a new valuable avenue for controlling this phenomenon. Furthermore, we show that these uncommon bimetallic couples could open attractive opportunities for synergistic reactivity. We notably report an uncommon deoxygenative carbyne transfer to CO2 resulting in rare examples of coinage metal ketenyl species, (tBuCCO)M(IPr), 4-M (M = Cu, Ag, Au). In the case of the Ta/Li analogue 1, the bis(alkylidene) tautomer is not detected, and the reaction with CO2 does not cleanly yield ketenyl species, which highlights the pivotal role played by the coinage metal partner in controlling these unconventional reactions.

3.
Angew Chem Int Ed Engl ; 63(16): e202400992, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38373040

RESUMO

A Surface OrganoMetallic Chemistry (SOMC) approach is used to prepare a novel hafnium-iridium catalyst immobilized on silica, HfIr/SiO2, featuring well-defined [≡SiOHf(CH2 tBu)2(µ-H)3IrCp*] surface sites. Unlike the monometallic analogous materials Hf/SiO2 and Ir/SiO2, which promote n-pentane deuterogenolysis through C-C bond scission, we demonstrate that under the same experimental conditions (1 bar D2, 250 °C, 3 h, 0.5 mol %), the heterobimetallic catalyst HfIr/SiO2 is highly efficient and selective for the perdeuteration of alkanes with D2, exemplified on n-pentane, without substantial deuterogenolysis (<2 % at 95 % conversion). Furthermore this HfIr/SiO2 catalyst is robust and can be re-used several times without evidence of decomposition. This represents substantial advance in catalytic H/D isotope exchange (HIE) reactions of C(sp3)-H bonds.

4.
Dalton Trans ; 52(7): 2157-2163, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36723026

RESUMO

We describe here a simple protocol yielding small (<2 nm) crystalline Pd2Sn nanoparticles (NPs) along with Pd homologues for sake of comparison. These NPs were obtained via an organometallic approach using Pd2(dba)3·dba (dba = dibenzylideneacetone) in THF with 2 equivalents of tributyltin hydride under 4 bars of H2 at room temperature. The Pd NP homologues were prepared similarly, using Pd2(dba)3·dba with 2 equivalents of n-octylsilane. These NPs were found to be crystalline and very small with a similar mean size (ca. 1.5 nm). These NPs were finally used as nanocatalysts in solution for a benchmark Suzuki-Miyaura cross-coupling reaction. The Pd2Sn NPs were found to be more active than Pd NPs analogues, exhibiting remarkable performances with Pd loading as low as 13 ppb. This result demonstrates a beneficial effect of tin on palladium in catalysis.

5.
Chem Commun (Camb) ; 58(59): 8214-8217, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35790123

RESUMO

The grafting of an iridium-aluminium precursor onto silica followed by thermal treatment under H2 yields small (<2 nm), narrowly distributed nanoparticles used as catalysts for methane H/D exchange. This Ir-Al/SiO2 catalyst demonstrated enhanced catalytic performances in comparison with the monometallic Ir/SiO2 analogue (TOFs of 339 h-1versus 117 h-1 respectively), highlighting the promoting effect of aluminium. TON up to 900 is obtained after 9 hours, without evidence of catalyst deactivation, and identical performances are achieved after air exposure, underlining the good robustness of both Ir-Al/SiO2 and Ir/SiO2 catalytic materials.

6.
Chem Commun (Camb) ; 58(25): 4091-4094, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35266478

RESUMO

The low temperature regioselective hydrosilylation of various alkenes with (1,1,1,3,5,5,5-heptamethyltrisiloxane) MDHM is described using Mn2(CO)10 under UV irradiation with Mn loadings as low as 1 mol%, in the absence of additives and with excellent selectivity and yields. The generation of a manganese radical allowed the anti-Markovnikov hydrosilylation products to be selectively obtained in yields up to 99%.

7.
J Am Chem Soc ; 143(12): 4844-4856, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33735575

RESUMO

The iridium tetrahydride complex Cp*IrH4 reacts with a range of isobutylaluminum derivatives of general formula Al(iBu)x(OAr)3-x (x = 1, 2) to give the unusual iridium aluminum species [Cp*IrH3Al(iBu)(OAr)] (1) via a reductive elimination route. The Lewis acidity of the Al atom in complex 1 is confirmed by the coordination of pyridine, leading to the adduct [Cp*IrH3Al(iBu)(OAr)(Py)] (2). Spectroscopic, crystallographic, and computational data support the description of these heterobimetallic complexes 1 and 2 as featuring strongly polarized Al(III)δ+-Ir(III)δ- interactions. Reactivity studies demonstrate that the binding of a Lewis base to Al does not quench the reactivity of the Ir-Al motif and that both species 1 and 2 promote the cooperative reductive cleavage of a range of heteroallenes. Specifically, complex 2 promotes the decarbonylation of CO2 and AdNCO, leading to CO (trapped as Cp*IrH2(CO)) and the alkylaluminum oxo ([(iBu)(OAr)Al(Py)]2(µ-O) (3)) and ureate ({Al(OAr)(iBu)[κ2-(N,O)AdNC(O)NHAd]} (4)) species, respectively. The bridged amidinate species Cp*IrH2(µ-CyNC(H)NCy)Al(iBu)(OAr) (5) is formed in the reaction of 2 with dicyclohexylcarbodiimine. Mechanistic investigations via DFT support cooperative heterobimetallic bond activation processes.

8.
RSC Adv ; 11(62): 39387-39398, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492485

RESUMO

Xylose is a major component of hemicelluloses. In this paper, its hydrogenation to xylitol in aqueous medium was investigated with two Ru/TiO2 catalysts prepared with two commercial TiO2 supports. A strong impact of the support on catalytic performance was evidenced. Ru/TiO2-R led to fast and selective conversion of xylose (100% conversion in 2 h at 120 °C with 99% selectivity) whereas Ru/TiO2-A gave a slower and much less selective transformation (58% conversion in 4 h at 120 °C with 17% selectivity) with the formation of several by-products. Detailed characterization of the catalysts with ICP, XRD, FTIR, TEM, H2 chemisorption, N2 porosimetry, TPR and acid-base titration was performed to elucidate the role of each support. TiO2-R has a small specific surface area with large ruthenium nanoparticles in weak interaction with the TiO2 support and no acidity, whereas TiO2-A is a mesoporous material with a large specific surface area that is mildly acidic, and bears small ruthenium particles in strong interaction with the TiO2 support. The former was very active and selective for xylose hydrogenation to xylitol whereas the latter was less active and poorly selective. Moreover, careful analysis of the reaction products also revealed that anatase TiO2 can catalyze undesired side-reactions such as xylose isomerisation to various pentoses, and therefore the corresponding unexpected polyols (arabitol, ribitol) were produced during xylose conversion by hydrogenation. In a first kinetic approach, a simplified kinetic model was built to compare quantitatively intrinsic reaction rates of both catalysts. The kinetic constant for hydrogenation was 20 times higher for Ru/TiO2-R at 120 °C.

9.
J Org Chem ; 85(18): 11732-11740, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32844646

RESUMO

This work describes the development of easy-to-prepare cobalt nanoparticles (NPs) in solution as promising alternative catalysts for alkene hydrosilylation with the industrially relevant tertiary silane 1,1,1,3,5,5,5-heptamethyltrisiloxane (MDHM). The Co NPs demonstrated high activity when used at 30 °C for 3.5-7 h in toluene, with catalyst loadings 0.05-0.2 mol %, without additives. Under these mild conditions, a set of terminal alkenes were found to react with MDHM, yielding exclusively the anti-Markovnikov product in up to 99% yields. Additionally, we demonstrated the possibility of using UV irradiation to further activate these cobalt NPs not only to enhance their catalytic performances but also to promote tandem isomerization-hydrosilylation reactions using internal alkenes, among them unsaturated fatty ester (methyl oleate), to produce linear products in up to quantitative yields.

10.
Inorg Chem ; 59(14): 10129-10137, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32628480

RESUMO

Vapor-phase infiltration (VPI), a technique derived from atomic layer deposition (ALD) and based on sequential self-limiting chemistry, is used to modify the stable microporous porphyrin-based metal-organic framework (MOF) MIL-173(Zr). VPI is an appealing approach to modifying MOFs by inserting reactants with atomic precision. The microporous nature and chemical stability of MIL-173 enable postsynthesis modification by VPI without MOF degradation even with extremely reactive precursors such as trimethylaluminum (TMA) and diethylzinc (DEZ). VPI proceeds through the diffusion of gaseous organometallic reactants TMA and DEZ inside the microporous framework, where they react with two kinds of chemical sites offered by the porphyrinic linker (phenolic and pyrrolic functions in the porphyrin core), without altering the crystallinity and permanent porosity of the MOF. 27Al NMR, UV-vis absorption, and IR spectroscopies are used to further characterize the modified material. Physisorption of both precursors is computationally simulated by grand canonical Monte Carlo methods and outlines the preferential adsorption sites. The impact of temperature, number of VPI cycles, and pulse length are investigated and show that aluminum and zinc are introduced in a saturating manner inside the MOF on both available reactive sites. The porosity prerequisite is outlined for VPI, which is proven to be much more effective than classical solution-based methods because it is solventless and fast, prevents workup steps, and allows reactions not possible by the classical solution approach.

11.
J Am Chem Soc ; 141(49): 19321-19335, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710215

RESUMO

A novel heterobimetallic tantalum/iridium hydrido complex, [{Ta(CH2tBu)3}{IrH2(Cp*)}] 1, featuring a very short metal-metal bond, has been isolated through an original alkane elimination route from Ta(CHtBu)(CH2tBu)3 and Cp*IrH4. This molecular precursor has been used to synthesize well-defined silica-supported low-coordinate heterobimetallic hydrido species [≡SiOTa(CH2tBu)2{IrH2(Cp*)}], 5, and [≡SiOTa(CH2tBu)H{IrH2(Cp*)}], 6, using a surface organometallic chemistry (SOMC) approach. The SOMC methodology prevents undesired dimerization as encountered in solution and leading to a tetranuclear species [{Ta(CH2tBu)2}(Cp*IrH)]2, 4. This approach therefore allows access to unique low-coordinate species not attainable in solution. These original supported Ta/Ir species exhibit drastically enhanced catalytic performances in H/D exchange reactions with respect to (i) monometallic analogues as well as (ii) homogeneous systems. In particular, material 6 promotes the H/D exchange between fluorobenzene and C6D6 or D2 as deuterium sources with excellent productivity (TON up to 1422; TOF up to 23.3 h-1) under mild conditions (25 °C, sub-atmospheric D2 pressure) without any additives.

12.
Dalton Trans ; 48(9): 2886-2890, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30734797

RESUMO

Thiolate-coordinated ruthenium alkylidene complexes can give high Z-selectivity and stereoretentivity in olefin metathesis. To investigate their applicability as heterogeneous catalysts, we have successfully developed a methodology to easily immobilize prototype ruthenium alkylidenes onto hybrid mesostructured silica via a thiolate tether. In contrast, the preparation of the corresponding molecular complexes appeared very challenging in solution. These prototype supported complexes contain small thiolates but still, they are slightly more Z-selective than their molecular analogues. These results open the door to more active and selective heterogeneous catalysts by supporting more advanced thiolate Ru-complexes.

13.
Angew Chem Int Ed Engl ; 57(25): 7453-7457, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29457685

RESUMO

Tailoring the physical features and the porous network architecture of silica-based hyperpolarizing solids containing TEMPO radicals, known as HYPSO (hybrid polarizing solids), enabled unprecedented performance of dissolution dynamic nuclear polarization (d-DNP). High polarization values up to P(1 H)=99 % were reached for samples impregnated with a mixture of H2 O/D2 O and loaded in a 6.7 T polarizer at temperatures around 1.2 K. These HYPSO materials combine the best performance of homogeneous DNP formulations with the advantages of solid polarizing matrices, which provide hyperpolarized solutions free of any-potentially toxic-additives (radicals and glass-forming agents). The hyperpolarized solutions can be expelled from the porous solids, filtered, and rapidly transferred either to a nuclear magnetic resonance (NMR) spectrometer or to a magnetic resonance imaging (MRI) system.

14.
Chemistry ; 24(17): 4361-4370, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29315910

RESUMO

The straightforward synthesis of a new unsymmetrical hydroxy-tethered N-heterocyclic carbene (NHC) ligand, HL, is presented. The free ligand exhibits an unusual OH-carbene hydrogen-bonding interaction. This OH-carbene motif was used to yield 1) the first tantalum complex displaying both a Fischer- and Schrock-type carbene ligand and 2) a unique NHC-based early/late heterobimetallic complex. More specifically, the protonolysis chemistry between the ligand's hydroxy group and imido-alkyl or alkylidene-alkyl tantalum precursor complexes yielded the rare monometallic tantalum-NHC complexes [Ta(XtBu)(L)(CH2 tBu)2 ] (X=N, CH), in which the alkoxy-carbene ligand acts as a chelate. In contrast, HL only binds to rhodium through the NHC unit in [Rh(HL)(cod)Cl] (cod=cycloocta-1,5-diene), the hydroxy pendant arm remaining unbound. This bifunctional ligand scaffold successfully promoted the assembly of rhodium/tantalum heterobimetallic complexes upon either 1) the insertion of [Rh(cod)Cl]2 into the Ta-NHC bond in [Ta(NtBu)(L)(CH2 tBu)2 ] or 2) protonolysis between the free hydroxy group in [Rh(HL)(cod)Cl] and one alkyl group in [Ta(NtBu)(CH2 tBu)3 ].

15.
ChemSusChem ; 10(22): 4442-4446, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28921891

RESUMO

The addition of a CO2 -adsorption component (substituted imidazolate-based SIM-1 crystals) to a gas-diffusion layer-type catalytic electrode enhances the activity and especially the selectivity towards >C1 carbon chain products (ethanol, acetone, and isopropanol) of a Pt-based electrocatalyst that is not able to form products of CO2 reduction involving C-C bond formation under conventional (liquid-phase) conditions. This indicates that the increase of the effective CO2 concentration at the electrode active surface is the factor controlling the formation of >C1 products rather than only the intrinsic properties of the electrocatalyst.


Assuntos
Dióxido de Carbono/química , Carbono/química , Platina/química , 2-Propanol/química , Acetona/química , Adsorção , Catálise , Difusão , Técnicas Eletroquímicas , Eletrodos , Etanol/química , Oxirredução , Propriedades de Superfície
16.
Chemistry ; 23(64): 16171-16173, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28940770

RESUMO

An Ir(NHC) supported catalyst is used in the selective hydrogenation of terpinen-4-ol to cis p-menthan-4-ol. Its activity, selectivity and stability are compared to those of a homogeneous homologue [IrCl(COD)MesImPr] and to a commercial Pd/C. The solid Ir catalyst is much more selective than the Pd catalyst (92 vs. 42 % at 80 °C) but also more active, more selective and more stable than the iridium complex in solution. For the first time, a supported catalyst shows an enhanced activity with respect to a complex in a diastereoselective hydrogenation reaction.

17.
Chem Commun (Camb) ; 53(20): 2962-2965, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28229136

RESUMO

A catalyst containing small (ca. 2.5 nm) and crystalline Pt nanoparticles embedded into the walls of a mesostructured silica framework was found to be highly active in alkene hydrosilylation reaching TONs of ca. 105. More importantly, no Pt leaching was detected. This result is remarkable because Pt leaching is a recurrent problem in alkene hydrosilylation, which often prevents heterogeneous catalysts from being used industrially. This result is in contrast to the significant Pt leaching observed for other Pt/SiO2 catalysts.

18.
Chemistry ; 23(8): 1784-1788, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-27973734

RESUMO

Luminescent core-shell crystals based on lanthanide tris-dipicolinate complexes were obtained from the successive growing of two different lanthanide complex layers. Selective or simultaneous emission of each part of the crystal can be achieved by a careful choice of the excitation wavelength.

19.
Nanoscale ; 9(2): 538-546, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27762415

RESUMO

The lack of scalable-methods for the growth of 2D MoS2 crystals, an identified emerging material with applications ranging from electronics to energy storage, is a current bottleneck against its large-scale deployment. We report here a two-step ALD route with new organometallic precursors, Mo(NMe2)4 and 1,2-ethanedithiol (HS(CH2)2SH) which consists in the layer-by-layer deposition of an amorphous surface Mo(iv) thiolate at 50 °C, followed by a subsequent annealing at higher temperature leading to ultra-thin MoS2 nanocrystals (∼20 nm-large) in the 1-2 monolayer range. In contrast to the usual high-temperature growth of 2D dichalcogenides, where nucleation is the key parameter to control both thickness and uniformity, our novel two-step ALD approach enables chemical control over these two parameters, the growth of 2D MoS2 crystals upon annealing being ensured by spatial confinement and facilitated by the formation of a buffer oxysulfide interlayer.

20.
J Phys Chem Lett ; 7(16): 3235-9, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27483034

RESUMO

We report a simple and general method for the hyperpolarization of condensed gases by dynamic nuclear polarization (DNP). The gases are adsorbed in the pores of structured mesoporous silica matrices known as HYPSOs (HYper Polarizing SOlids) that have paramagnetic polarizing agents covalently bound to the surface of the mesopores. DNP is performed at low temperatures and moderate magnetic fields (T = 1.2 K and B0 = 6.7 T). Frequency-modulated microwave irradiation is applied close to the electron spin resonance frequency (f = 188.3 GHz), and the electron spin polarization of the polarizing agents of HYPSO is transferred to the nuclear spins of the frozen gas. A proton polarization as high as P((1)H) = 70% can be obtained, which can be subsequently transferred to (13)C in natural abundance by cross-polarization, yielding up to P((13)C) = 27% for ethylene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA