Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(8): 2496-2506, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39144564

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with limited treatment options. Modulated electro-hyperthermia (mEHT) is a novel adjuvant cancer therapy that induces selective cancer damage. However, mEHT upregulates heat shock protein beta 1 (HSPB1), a cancer-promoting stress chaperone molecule. Thus, we investigated whether ivermectin (IVM), an anthelmintic drug, may synergize with mEHT and enhance its anticancer effects by inhibiting HSPB1 phosphorylation. Isogenic 4T1 TNBC cells were inoculated into BALB/c mice and treated with mEHT, IVM, or a combination of both. IVM synergistically improved the tumor growth inhibition achieved by mEHT. Moreover, IVM downregulated mEHT-induced HSPB1 phosphorylation. Thus, the strongest cancer tissue damage was observed in the mEHT + IVM-treated tumors, coupled with the strongest apoptosis induction and proliferation inhibition. In addition, there was no significant body weight loss in mice treated with mEHT and IVM, indicating that this combination was well-tolerated. In conclusion, mEHT combined with IVM is a new, effective, and safe option for the treatment of TNBC.

2.
Epilepsy Behav ; 159: 109990, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39181111

RESUMO

BACKGROUND: Novel mobile and portable EEG solutions, designed for short and long-term monitoring of individuals with epilepsy have been developed in recent years but, they are underutilized, lacking full integration into clinical routine. Exploring the opinions of hospital-based healthcare professionals regarding their potential application, technical requirements and value would be crucial for future device development and increase their clinical application. PURPOSE: To evaluate professionals' opinions on novel EEG systems, focusing on their potential application in various clinical settings, professionals' interest in non-invasive solutions for ultra-long monitoring of people with epilepsy (PWE) and factors which could increase future use of novel EEG systems. MATERIALS AND METHODS: We conducted an online survey where Hospital-based professionals shared opinions on potential advantages, clinical value, and key features of novel wearable EEG systems in five different clinical settings. Additionally, insights were gathered on the need for future research and, the need for additional information about devices from companies and researchers. RESULTS: Respondents (n = 40) prioritized high performance, data quality, easy patient mobility, and comfort as crucial features for novel devices. Advantages were highlighted, including more natural settings, reduced application time, earlier epilepsy diagnosis, and decreased support requirements. Novel EEG devices were seen as valuable for epilepsy diagnosis, seizure monitoring, automatic seizure documentation, seizure alarms, and seizure forecasting. Interest in integrating these new systems into clinical practice was high, particularly for supervising drug-resistant epilepsy, reducing SUDEP, and detecting nocturnal seizures. Professionals emphasized the need for more research studies and highlighted the need for increased information from companies and researchers. CONCLUSIONS: Professionals underscore specific technical and practical features, along with potential clinical advantages and value of novel EEG devices that could drive their development. While interest in integrating these solutions in clinical practice exists, further validation studies and enhanced communication between researchers, companies, and clinicians are crucial for overcoming potential scepticism and facilitating widespread adoption.


Assuntos
Eletroencefalografia , Epilepsia , Pessoal de Saúde , Dispositivos Eletrônicos Vestíveis , Humanos , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Feminino , Atitude do Pessoal de Saúde , Masculino , Adulto , Inquéritos e Questionários , Pessoa de Meia-Idade , Hospitais
3.
Sci Total Environ ; 950: 174880, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39053522

RESUMO

The lack of synthesized information regarding biodiversity is a major problem among researchers, leading to a pervasive cycle where ecologists make field campaigns to collect information that already exists and yet has not been made available for a broader audience. This problem leads to long-lasting effects in public policies such as spending money multiple times to conduct similar studies in the same area. We aim to identify this knowledge gap by synthesizing information available regarding two Brazilian long-term biodiversity programs and the metadata generated by them. Using a unique dataset containing 1904 metadata, we identified patterns of metadata distribution and intensity of research conducted in Brazil, as well as where we should concentrate research efforts in the next decades. We found that the majority of metadata were about vertebrates, followed by plants, invertebrates, and fungi. Caatinga was the biome with least metadata, and that there's still a lack of information regarding all biomes in Brazil, with none of them being sufficiently sampled. We hope that these results will have implications for broader conservation and management guiding, as well as to funding allocation programs.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Brasil , Conservação dos Recursos Naturais/métodos , Ecologia , Monitoramento Ambiental/métodos
4.
Sci Rep ; 14(1): 8241, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589452

RESUMO

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Assuntos
Aminopiridinas , Hipertermia Induzida , Indazóis , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Feminino , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , RNA Mensageiro , Fatores de Transcrição de Choque Térmico/genética
5.
Reprod Toxicol ; 126: 108584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561096

RESUMO

In the domain of medical advancement, nanotechnology plays a pivotal role, especially in the synthesis of biocompatible materials for therapeutic use. Superparamagnetic Iron Oxide Nanoparticles (SPIONs), known for their magnetic properties and low toxicity, stand at the forefront of this innovation. This study explored the reproductive toxicological effects of Sodium Citrate-functionalized SPIONs (Cit_SPIONs) in adult male mice, an area of research that holds significant potential yet remains largely unknown. Our findings reveal that Cit_SPIONs induce notable morphological changes in interstitial cells and the seminiferous epithelium when introduced via intratesticular injection. This observation is critical in understanding the interactions of nanomaterials within reproductive biological systems. A striking feature of this study is the rapid localization of Cit_SPIONs in Leydig cells post-injection, a factor that appears to be closely linked with the observed decrease in steroidogenic activity and testosterone levels. This data suggests a possible application in developing nanostructured therapies targeting androgen-related processes. Over 56 days, these nanoparticles exhibited remarkable biological distribution in testis parenchyma, infiltrating various cells within the tubular and intertubular compartments. While the duration of spermatogenesis remained unchanged, there were many Tunel-positive germ cells, a notable reduction in daily sperm production, and reduced progressive sperm motility in the treated group. These insights not only shed light on the intricate mechanisms of Cit_SPIONs interaction with the male reproductive system but also highlight the potential of nanotechnology in developing advanced biomedical applications.


Assuntos
Células Intersticiais do Testículo , Nanopartículas Magnéticas de Óxido de Ferro , Espermatogênese , Espermatozoides , Testículo , Testosterona , Animais , Masculino , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Camundongos , Citrato de Sódio/toxicidade
6.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673856

RESUMO

Immune response to biomaterials, which is intimately related to their surface properties, can produce chronic inflammation and fibrosis, leading to implant failure. This study investigated the development of magnetic nanoparticles coated with silica and incorporating the anti-inflammatory drug naproxen, aimed at multifunctional biomedical applications. The synthesized nanoparticles were characterized using various techniques that confirmed the presence of magnetite and the formation of a silica-rich bioactive glass (BG) layer. In vitro studies demonstrated that the nanoparticles exhibited bioactive properties, forming an apatite surface layer when immersed in simulated body fluid, and biocompatibility with bone cells, with good viability and alkaline phosphatase activity. Naproxen, either free or encapsulated, reduced nitric oxide production, an inflammatory marker, while the BG coating alone did not show anti-inflammatory effects in this study. Overall, the magnetic nanoparticles coated with BG and naproxen showed promise for biomedical applications, especially anti-inflammatory activity in macrophages and in the bone field, due to their biocompatibility, bioactivity, and osteogenic potential.


Assuntos
Materiais Revestidos Biocompatíveis , Vidro , Nanopartículas de Magnetita , Naproxeno , Naproxeno/farmacologia , Naproxeno/química , Vidro/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Nanopartículas de Magnetita/química , Animais , Camundongos , Humanos , Óxido Nítrico/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Dióxido de Silício/química , Sobrevivência Celular/efeitos dos fármacos , Células RAW 264.7 , Osteogênese/efeitos dos fármacos
8.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542073

RESUMO

Modulated electro-hyperthermia (mEHT) is an adjuvant cancer therapy that enables tumor-selective heating (+2.5 °C). In this study, we investigated whether mEHT accelerates the tumor-specific delivery of doxorubicin (DOX) from lyso-thermosensitive liposomal doxorubicin (LTLD) and improves its anticancer efficacy in mice bearing a triple-negative breast cancer cell line (4T1). The 4T1 cells were orthotopically injected into Balb/C mice, and mEHT was performed on days 9, 12, and 15 after the implantation. DOX, LTLD, or PEGylated liposomal DOX (PLD) were administered for comparison. The tumor size and DOX accumulation in the tumor were measured. The cleaved caspase-3 (cC3) and cell proliferation were evaluated by cC3 or Ki67 immunohistochemistry and Western blot. The LTLD+mEHT combination was more effective at inhibiting tumor growth than the free DOX and PLD, demonstrated by reductions in both the tumor volume and tumor weight. LTLD+mEHT resulted in the highest DOX accumulation in the tumor one hour after treatment. Tumor cell damage was associated with cC3 in the damaged area, and with a reduction in Ki67 in the living area. These changes were significantly the strongest in the LTLD+mEHT-treated tumors. The body weight loss was similar in all mice treated with any DOX formulation, suggesting no difference in toxicity. In conclusion, LTLD combined with mEHT represents a novel approach for DOX delivery into cancer tissue.


Assuntos
Doxorrubicina/análogos & derivados , Hipertermia Induzida , Neoplasias , Camundongos , Animais , Lipossomos , Antígeno Ki-67 , Hipertermia Induzida/métodos , Doxorrubicina/farmacologia , Hipertermia , Linhagem Celular Tumoral , Polietilenoglicóis
9.
ACS Pharmacol Transl Sci ; 7(2): 456-466, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357275

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer type with no targeted therapy and hence limited treatment options. Modulated electrohyperthermia (mEHT) is a novel complementary therapy where a 13.56 MHz radiofrequency current targets cancer cells selectively, inducing tumor damage by thermal and electromagnetic effects. We observed severe vascular damage in mEHT-treated tumors and investigated the potential synergism between mEHT and inhibition of tumor vasculature recovery in our TNBC mouse model. 4T1/4T07 isografts were orthotopically inoculated and treated three to five times with mEHT. mEHT induced vascular damage 4-12 h after treatment, leading to tissue hypoxia detected at 24 h. Hypoxia in treated tumors induced an angiogenic recovery 24 h after the last treatment. Administration of the cardiac glycoside digoxin with the potential hypoxia-inducible factor 1-α (HIF1-α) and angiogenesis inhibitory effects could synergistically augment mEHT-mediated tumor damage and reduce tissue hypoxia signaling and consequent vascular recovery in mEHT-treated TNBC tumors. Conclusively, repeated mEHT induced vascular damage and hypoxic stress in TNBC that promoted vascular recovery. Inhibiting this hypoxic stress signaling enhanced the effectiveness of mEHT and may potentially enhance other forms of cancer treatment.

10.
Neurology ; 102(6): e209230, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38394620
11.
Epilepsia ; 65(4): 1017-1028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366862

RESUMO

OBJECTIVE: Epilepsy management employs self-reported seizure diaries, despite evidence of seizure underreporting. Wearable and implantable seizure detection devices are now becoming more widely available. There are no clear guidelines about what levels of accuracy are sufficient. This study aimed to simulate clinical use cases and identify the necessary level of accuracy for each. METHODS: Using a realistic seizure simulator (CHOCOLATES), a ground truth was produced, which was then sampled to generate signals from simulated seizure detectors of various capabilities. Five use cases were evaluated: (1) randomized clinical trials (RCTs), (2) medication adjustment in clinic, (3) injury prevention, (4) sudden unexpected death in epilepsy (SUDEP) prevention, and (5) treatment of seizure clusters. We considered sensitivity (0%-100%), false alarm rate (FAR; 0-2/day), and device type (external wearable vs. implant) in each scenario. RESULTS: The RCT case was efficient for a wide range of wearable parameters, though implantable devices were preferred. Lower accuracy wearables resulted in subtle changes in the distribution of patients enrolled in RCTs, and therefore higher sensitivity and lower FAR values were preferred. In the clinic case, a wide range of sensitivity, FAR, and device type yielded similar results. For injury prevention, SUDEP prevention, and seizure cluster treatment, each scenario required high sensitivity and yet was minimally influenced by FAR. SIGNIFICANCE: The choice of use case is paramount in determining acceptable accuracy levels for a wearable seizure detection device. We offer simulation results for determining and verifying utility for specific use case and specific wearable parameters.


Assuntos
Epilepsia Generalizada , Epilepsia , Morte Súbita Inesperada na Epilepsia , Dispositivos Eletrônicos Vestíveis , Humanos , Morte Súbita Inesperada na Epilepsia/prevenção & controle , Convulsões/diagnóstico , Convulsões/terapia , Epilepsia/diagnóstico , Eletroencefalografia/métodos
12.
Mol Oncol ; 18(4): 1012-1030, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217262

RESUMO

Triple-negative breast cancer (TNBC) is a leading cause of cancer mortality and lacks modern therapy options. Modulated electro-hyperthermia (mEHT) is an adjuvant therapy with demonstrated clinical efficacy for the treatment of various cancer types. In this study, we report that mEHT monotherapy stimulated interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) expression, and consequently cyclooxygenase 2 (COX-2), which may favor a cancer-promoting tumor microenvironment. Thus, we combined mEHT with nonsteroid anti-inflammatory drugs (NSAIDs): a nonselective aspirin, or the selective COX-2 inhibitor SC236, in vivo. We demonstrate that NSAIDs synergistically increased the effect of mEHT in the 4T1 TNBC model. Moreover, the strongest tumor destruction ratio was observed in the combination SC236 + mEHT groups. Tumor damage was accompanied by a significant increase in cleaved caspase-3, suggesting that apoptosis played an important role. IL-1ß and COX-2 expression were significantly reduced by the combination therapies. In addition, a custom-made nanostring panel demonstrated significant upregulation of genes participating in the formation of the extracellular matrix. Similarly, in the B16F10 melanoma model, mEHT and aspirin synergistically reduced the number of melanoma nodules in the lungs. In conclusion, mEHT combined with a selective COX-2 inhibitor may offer a new therapeutic option in TNBC.


Assuntos
Benzenossulfonamidas , Hipertermia Induzida , Melanoma , Pirazóis , Neoplasias de Mama Triplo Negativas , Humanos , Melanoma/tratamento farmacológico , Ciclo-Oxigenase 2 , Neoplasias de Mama Triplo Negativas/terapia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Aspirina/farmacologia , Aspirina/uso terapêutico , Microambiente Tumoral
13.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176599

RESUMO

The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Linhagem Celular Tumoral , Apoptose , Neoplasias/terapia
14.
Epilepsy Behav ; 151: 109609, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160578

RESUMO

BACKGROUND: Recent technological advancements offer new ways to monitor and manage epilepsy. The adoption of these devices in routine clinical practice will strongly depend on patient acceptability and usability, with their perspectives being crucial. Previous studies provided feedback from patients, but few explored the experience of them using independently multiple devices independently at home. PURPOSE: The study, assessed through a mixed methods design, the direct experiences of people with epilepsy independently using a non-invasive monitoring system (EEG@HOME) for an extended duration of 6 months, at home. We aimed to investigate factors affecting engagement, gather qualitative insights, and provide recommendations for future home epilepsy monitoring systems. MATERIALS AND METHODS: Adults with epilepsy independently were trained to use a wearable dry EEG system, a wrist-worn device, and a smartphone app for seizure tracking and behaviour monitoring for 6 months at home. Monthly acceptability questionnaires (PSSUQ, SUS) and semi-structured interviews were conducted to explore participant experience. Adherence with the procedure, acceptability scores and systematic thematic analysis of the interviews, focusing on the experience with the procedure, motivation and benefits and opinion about the procedure were assessed. RESULTS: Twelve people with epilepsy took part into the study for an average of 193.8 days (range 61 to 312) with a likelihood of using the system at six months of 83 %. The e-diary and the smartwatch were highly acceptable and preferred to a wearable EEG system (PSSUQ score of 1.9, 1.9, 2.4). Participants showed an acceptable level of adherence with all solutions (Average usage of 63 %, 66 %, 92 %) reporting more difficulties using the EEG twice a day and remembering to complete the daily behavioural questionnaires. Clear information and training, continuous remote support, perceived direct and indirect benefits and the possibility to have a flexible, tailored to daily routine monitoring were defined as key factors to ensure compliance with long-term monitoring systems. CONCLUSIONS: EEG@HOME study demonstrated people with epilepsy' interest and ability in active health monitoring using new technologies. Remote training and support enable independent home use of new non-invasive technologies, but to ensure long term acceptability and usability systems will require to be integrated into patients' routines, include healthcare providers, and offer continuous support and personalized feedback.


Assuntos
Epilepsia , Adulto , Humanos , Estudos de Viabilidade , Epilepsia/diagnóstico , Pessoal de Saúde , Inquéritos e Questionários , Eletroencefalografia
15.
Front Surg ; 10: 1304343, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026479

RESUMO

Background: A new class of subcutaneous electroencephalography has enabled ultra long-term monitoring of people with epilepsy. The objective of this paper is to describe surgeons' experiences in an early series of implantations as well as discomfort or complications experienced by the participants. Methods: We included 38 implantation procedures from two trials on people with epilepsy and healthy adults. Questionnaires to assess surgeons' and participants' experience were analyzed as well as all recorded adverse events occurring up to 21 days post-surgery. Results: With training, the implantation could be performed in approximately 15 min. Overall, the implantation procedure was considered easy to perform with only 2 episodes where the implant got fixated in the introducing needle and a new implant had to be used. The explantation procedure was considered effortless. In 2 cases the silicone sheath covering the lead was damaged during the explantation, but it was possible to remove the entire implant without leaving any foreign body under the skin. Especially in the trial on healthy participants, a proportion experienced adverse events in the form of headache or implant-pain up to 21 days post-operatively. In 6 cases, adverse events contributed to the decision to explant and discontinue the study: Four of these cases involved implant pain or headache; One case involved a post-operative local infection; and in one case superficial lead placement resulted in skin perforation a few weeks after implantation. Conclusion: The implantation and explantation procedures are considered swift and easy to perform by both neurosurgeons and ENT surgeons. The implant is well tolerated by most participants. However, headache or pain around the implant can occur for up to 21 days post-operatively as anticipated with any such surgery. The expected benefits from the implant should always outweigh the potential disadvantages.

16.
Epilepsia ; 64(9): 2421-2433, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37303239

RESUMO

OBJECTIVE: Previous studies suggested that patients with epilepsy might be able to forecast their own seizures. This study aimed to assess the relationships between premonitory symptoms, perceived seizure risk, and future and recent self-reported and electroencephalographically (EEG)-confirmed seizures in ambulatory patients with epilepsy in their natural home environments. METHODS: Long-term e-surveys were collected from patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication adherence, sleep quality, mood, stress, perceived seizure risk, and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with the seizure forecasting classifiers and device forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). RESULTS: Fifty-four subjects returned 10 269 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed that increased stress (OR = 2.01, 95% confidence interval [CI] = 1.12-3.61, AUC = .61, p = .02) was associated with increased relative odds of future self-reported seizures. Multivariate analysis showed that previous self-reported seizures (OR = 5.37, 95% CI = 3.53-8.16, AUC = .76, p < .001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (OR = 3.34, 95% CI = 1.87-5.95, AUC = .69, p < .001) remained significant when prior self-reported seizures were added to the model. No correlation with medication adherence was found. No significant association was found between e-survey responses and subsequent EEG seizures. SIGNIFICANCE: Our results suggest that patients may tend to self-forecast seizures that occur in sequential groupings and that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting.


Assuntos
Epilepsia , Convulsões , Humanos , Convulsões/diagnóstico , Convulsões/epidemiologia , Epilepsia/complicações , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Eletroencefalografia/métodos , Análise Multivariada , Inquéritos e Questionários
17.
EBioMedicine ; 93: 104656, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37331164

RESUMO

BACKGROUND: Seizure risk forecasting could reduce injuries and even deaths in people with epilepsy. There is great interest in using non-invasive wearable devices to generate forecasts of seizure risk. Forecasts based on cycles of epileptic activity, seizure times or heart rate have provided promising forecasting results. This study validates a forecasting method using multimodal cycles recorded from wearable devices. METHOD: Seizure and heart rate cycles were extracted from 13 participants. The mean period of heart rate data from a smartwatch was 562 days, with a mean of 125 self-reported seizures from a smartphone app. The relationship between seizure onset time and phases of seizure and heart rate cycles was investigated. An additive regression model was used to project heart rate cycles. The results of forecasts using seizure cycles, heart rate cycles, and a combination of both were compared. Forecasting performance was evaluated in 6 of 13 participants in a prospective setting, using long-term data collected after algorithms were developed. FINDINGS: The results showed that the best forecasts achieved a mean area under the receiver-operating characteristic curve (AUC) of 0.73 for 9/13 participants showing performance above chance during retrospective validation. Subject-specific forecasts evaluated with prospective data showed a mean AUC of 0.77 with 4/6 participants showing performance above chance. INTERPRETATION: The results of this study demonstrate that cycles detected from multimodal data can be combined within a single, scalable seizure risk forecasting algorithm to provide robust performance. The presented forecasting method enabled seizure risk to be estimated for an arbitrary future period and could be generalised across a range of data types. In contrast to earlier work, the current study evaluated forecasts prospectively, in subjects blinded to their seizure risk outputs, representing a critical step towards clinical applications. FUNDING: This study was funded by an Australian Government National Health & Medical Research Council and BioMedTech Horizons grant. The study also received support from the Epilepsy Foundation of America's 'My Seizure Gauge' grant.


Assuntos
Epilepsia , Convulsões , Humanos , Projetos Piloto , Estudos Prospectivos , Autorrelato , Estudos Retrospectivos , Frequência Cardíaca , Austrália , Convulsões/epidemiologia , Epilepsia/epidemiologia , Previsões
19.
Toxicology ; 492: 153543, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150288

RESUMO

This study aimed to evaluate the gold nanoparticles (AuNPs) animal sterilizing potential after intratesticular injections and long-term adverse reproductive and systemic effects. Adult male Wistar rats were divided into control and gold nanoparticle (AuNPs) groups. The rats received 200 µL of saline or AuNPs solution (16 µg/mL) on experimental days 1 and 7 (ED1 and ED7). After 150 days, the testicular blood flow was measured, and the rats were mated with females. After mating, male animals were euthanized for histological, cellular, and molecular evaluations. The female fertility indices and fetal development were also recorded. The results indicated increased blood flow in the testes of treated animals. Testes from treated rats had histological abnormalities, shorter seminiferous epithelia, and oxidative stress. Although the sperm concentration was lower in the AuNP-treated rats, there were no alterations in sperm morphology. Animals exposed to AuNPs had decreased male fertility indices, and their offspring had lighter and less efficient placentas. Additionally, the anogenital distance was longer in female fetuses. There were no changes in the histology of the kidney and liver, the lipid profile, and the serum levels of LH, testosterone, AST, ALT, ALP, albumin, and creatinine. The primary systemic effect was an increase in MDA levels in the liver and kidney, with only the liver experiencing an increase in CAT activity. In conclusion, AuNPs have a long-term impact on reproduction with very slight alterations in animal health. The development of reproductive biotechnologies that eliminate germ cells or treat local cancers can benefit from using AuNPs.


Assuntos
Ouro , Nanopartículas Metálicas , Gravidez , Masculino , Feminino , Ratos , Animais , Ouro/toxicidade , Ratos Wistar , Nanopartículas Metálicas/toxicidade , Sêmen , Reprodução , Testículo , Testosterona , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Espermatozoides
20.
Epilepsia ; 64(6): 1627-1639, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37060170

RESUMO

OBJECTIVE: The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS: In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS: Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE: Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.


Assuntos
Epilepsia , Convulsões , Humanos , Estudos de Coortes , Convulsões/diagnóstico , Eletroencefalografia , Monitorização Ambulatorial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA