Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 43(21): 1608-1619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565943

RESUMO

Cancer cells employ adaptive mechanisms to survive various stressors, including genotoxic drugs. Understanding the factors promoting survival is crucial for developing effective treatments. In this study, we unveil a previously unexplored long non-coding RNA, JUNI (JUN-DT, LINC01135), which is upregulated by genotoxic drugs through the activation of stress-activated MAPKs, JNK, and p38 and consequently exerts positive control over the expression of its adjacent gene product c-Jun, a well-known oncoprotein, which transduces signals to multiple transcriptional outputs. JUNI regulates cellular migration and has a crucial role in conferring cellular resistance to chemotherapeutic drugs or UV radiation. Depletion of JUNI markedly increases the sensitivity of cultured cells and spheroids to chemotherapeutic agents. We identified 57 proteins interacting with JUNI. The activity of one of them the MAPK phosphatase and inhibitor, DUSP14, is counteracted by JUNI, thereby, facilitating efficient JNK phosphorylation and c-Jun induction when cells are exposed to UV radiation. The antagonistic interplay with DUSP14 contributes not only to c-Jun induction but also augments the survival of UV-exposed cells. In summary, we introduce JUNI as a novel stress-inducible regulator of c-Jun, positioning it as a potential target for enhancing the sensitivity of cancer cells to chemotherapy.


Assuntos
Movimento Celular , Sobrevivência Celular , Fosfatases de Especificidade Dupla , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Movimento Celular/genética , Sobrevivência Celular/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Linhagem Celular Tumoral , Raios Ultravioleta/efeitos adversos , Sistema de Sinalização das MAP Quinases/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
2.
Methods Mol Biol ; 2488: 125-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35347687

RESUMO

The TGF-ß pathway is known to behave as a classical morphogen, meaning that it can dictate cell fate decisions in a dose-dependent manner. Recent observations however showed that in addition to the absolute value of morphogen concentration, cells could also extract information from its temporal variations. In the present article we describe how to use automated microfluidics cell culture to stimulate cells with precisely defined temporal profiles of morphogens and how to engineer mouse embryonic stem cells with fluorescent reporters of pathway activity to record in real time their response to the applied stimulations. The combination of automated cell culture and of live cell reporter provides a complete toolbox to study how cells encode the information carried by time-varying TGF-ß signals.


Assuntos
Microfluídica , Células-Tronco Embrionárias Murinas , Animais , Diferenciação Celular , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
3.
J Neurosci ; 31(48): 17406-15, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22131402

RESUMO

In Drosophila, opsin visual photopigments as well as blue-light-sensitive cryptochrome (CRY) contribute to the synchronization of circadian clocks. We focused on the relatively simple larval brain, with nine clock neurons per hemisphere: five lateral neurons (LNs), four of which express the pigment-dispersing factor (PDF) neuropeptide, and two pairs of dorsal neurons (DN1s and DN2s). CRY is present only in the PDF-expressing LNs and the DN1s. The larval visual organ expresses only two rhodopsins (RH5 and RH6) and projects onto the LNs. We recently showed that PDF signaling is required for light to synchronize the CRY(-) larval DN2s. We now show that, in the absence of functional CRY, synchronization of the DN1s also requires PDF, suggesting that these neurons have no direct connection with the visual system. In contrast, the fifth (PDF(-)) LN does not require the PDF-expressing cells to receive visual system inputs. All clock neurons are light-entrained by light-dark cycles in the rh5(2);cry(b), rh6(1) cry(b), and rh5(2);rh6(1) double mutants, whereas the triple mutant is circadianly blind. Thus, any one of the three photosensitive molecules is sufficient, and there is no other light input for the larval clock. Finally, we show that constant activation of the visual system can suppress molecular oscillations in the four PDF-expressing LNs, whereas, in the adult, this effect of constant light requires CRY. A surprising diversity and specificity of light input combinations thus exists even for this simple clock network.


Assuntos
Encéfalo/fisiologia , Drosophila/fisiologia , Neurônios/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Proteínas CLOCK/genética , Proteínas de Drosophila/genética , Larva/fisiologia , Estimulação Luminosa/métodos , Fotoperíodo , Rodopsina/genética
4.
EMBO Rep ; 12(6): 549-57, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21525955

RESUMO

In the Drosophila circadian clock, the CLOCK/CYCLE complex activates the period and timeless genes that negatively feedback on CLOCK/CYCLE activity. The 24-h pace of this cycle depends on the stability of the clock proteins. RING-domain E3 ubiquitin ligases have been shown to destabilize PERIOD or TIMELESS. Here we identify a clock function for the circadian trip (ctrip) gene, which encodes a HECT-domain E3 ubiquitin ligase. ctrip expression in the brain is mostly restricted to clock neurons and its downregulation leads to long-period activity rhythms in constant darkness. This altered behaviour is associated with high CLOCK levels and persistence of phosphorylated PERIOD during the subjective day. The control of CLOCK protein levels does not require PERIOD. Thus, CTRIP seems to regulate the pace of the oscillator by controlling the stability of both the activator and the repressor of the feedback loop.


Assuntos
Proteínas CLOCK/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Regulação da Expressão Gênica , Proteínas Circadianas Period/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Relógios Biológicos/genética , Encéfalo/metabolismo , Regulação para Baixo , Drosophila/metabolismo , Feminino , Ordem dos Genes , Masculino , Dados de Sequência Molecular , Atividade Motora/fisiologia , Neurônios/metabolismo , Estabilidade Proteica , Interferência de RNA , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA