Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 113: 312-318, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32570156

RESUMO

An increasing number of states and municipalities are choosing to reduce plastic litter by replacing plastic items, particularly single-use ones, with same-use products manufactured from compostable plastics. This study investigated the formation and persistence of compostable film microplastic particles (CFMPs) from ultra-thin compostable carrier bags in soil under laboratory conditions, and the potential impact of CFMPs on Aspergillus flavus populations in the soil. During a 12-month incubation period, compostable film samples in soils with small, medium or large populations of indigenous A. flavus, underwent 5.9, 9.8, and 17.1% reduction in total surface area, respectively. Despite the low levels of deterioration, the number of CFMPs released increased steadily over the incubation period, particularly fragments with size < 0.05 mm. Up to 88.4% of the released fragments had associated A. flavus and up to 68% of isolates from CFMPs produced aflatoxins. A. flavus levels associated with CFMPs increased rapidly during the initial part of the 12-month incubation period, whereas the percent aflatoxigenicity continued to increase even after A. flavus density leveled off later. During 12 months incubation, A. flavus DNA amounts recovered from CFMPs increased in soils with all levels of indigenous A. flavus, with the largest increases (119.1%) occurring in soil containing the lowest indigenous A. flavus. These results suggest that burying compostable film in soil, or application of compost containing CFMPs, may reduce soil quality and increase risk of adverse impacts from elevated aflatoxigenic A. flavus populations in soil.


Assuntos
Aspergillus flavus , Plásticos Biodegradáveis , Microplásticos , Solo , Microbiologia do Solo
2.
Chemosphere ; 226: 645-650, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30959449

RESUMO

Encapsulating fungicides and/or insecticides in film-coatings applied to agronomic seeds has become a widely accepted method for enhancing seed germination and overall seedling health by protecting against many diseases and early-season insect pests. Despite advancements in seed film-coating technologies, abrasion of the seed coating can occur during handling and mechanical planting operations, resulting in variable amounts of detached fragments entering the soil. The present study investigated the degradation in soil of these plastic-like, small-sized fragments, referred to here as microplastic coating fragments. Degradation of microplastic coating fragments in soil was found to be highly variable. The lowest degradation rate (≤48 days) was observed in fragments detached from seeds coated with a commercial polymer mixture, while fragments from a biodegradable plastic formulation degraded completely within 32 days. When spores of the plant growth-promoting bacterium, Bacillus subtilis, were incorporated into the bioplastic, degradation was even more rapid (≤24 days). The fragment degradation rate was unaffected by incorporating two commonly used neonicotinoid insecticides, imidacloprid or thiacloprid, into either coating formulations, but insecticide dissipation rates in soil were more rapid when added associated with seed coating fragments than when spiked in directly. Half-lives of these two insecticides were reduced by up to 27% in fragments from bioplastic-coated seeds. These results are consistent with variable and not easily predicted soil degradation rates for seed coating fragments, with enhanced dissipation of coating-entrapped pesticides and with a higher degradation rate for biodegradable seed coating incorporating selected microbial strains.


Assuntos
Fungicidas Industriais/metabolismo , Inseticidas/metabolismo , Praguicidas/metabolismo , Plásticos/metabolismo , Sementes/química , Poluentes do Solo/metabolismo , Solo/química , Bacillus subtilis/metabolismo , Inseticidas/análise , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Plântula/metabolismo , Poluentes do Solo/análise , Tiazinas/metabolismo
3.
Pest Manag Sci ; 72(8): 1521-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26518170

RESUMO

BACKGROUND: Applying non-aflatoxin-producing Aspergillus flavus isolates to the soil has been shown to be effective in reducing aflatoxin levels in harvested crops, including peanuts, cotton and corn. The aim of this study was to evaluate the possibility of controlling aflatoxin contamination using a novel sprayable formulation consisting of a partially gelatinized starch-based bioplastic dispersion embedded with spores of biocontrol A. flavus strains, which is applied to the leaf surfaces of corn plants. RESULTS: The formulation was shown to be adherent, resulting in colonization of leaf surfaces with the biocontrol strain of A. flavus, and to reduce aflatoxin contamination of harvested kernels by up to 80% in Northern Italy and by up to 89% in the Mississippi Delta. The percentage of aflatoxin-producing isolates in the soil reservoir under leaf-treated corn was not significantly changed, even when the soil was amended with additional A. flavus as a model of changes to the soil reservoir that occur in no-till agriculture. CONCLUSIONS: This study indicated that it is not necessary to treat the soil reservoir in order to achieve effective biocontrol of aflatoxin contamination in kernel corn. Spraying this novel bioplastic-based formulation to leaves can be an effective alternative in the biocontrol of A. flavus in corn. © 2015 Society of Chemical Industry.


Assuntos
Aflatoxinas/análise , Aspergillus flavus , Controle Biológico de Vetores/métodos , Zea mays/microbiologia , Contaminação de Alimentos/prevenção & controle , Itália , Mississippi , Folhas de Planta/química , Folhas de Planta/microbiologia , Polímeros , Zea mays/química
4.
Pest Manag Sci ; 69(9): 1085-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23436551

RESUMO

BACKGROUND: A novel biocontrol strategy consisting of field application of bioplastic-based granules inoculated with a non-toxigenic Aspergillus flavus L. strain has recently been shown to be effective for reducing aflatoxin contamination in corn. This study focused on other factors that may affect the feasibility of this biocontrol technique, and more specifically the role of the European corn borer (ECB), Ostrinia nubilalis H., in the dispersal and infestation of A. flavus in corn and its impact on crop yield. RESULTS: In spite of the high percentage of corn ears showing larval feeding damage, ECB-bored kernels accounted for only 3 and 4% in 2009 and 2010 respectively. Most of the damaged kernels were localised in the ear tip or immediately below. More precisely, the average incidence of ECB-bored kernels in the upper end of the ear was 32%. However, less than 5% of kernels from the central body of the ear, which includes the majority of kernels, were injured by ECB. CONCLUSIONS: Although ECB larvae showed a high tolerance to aflatoxin B1 and thus had the potential to serve as vectors of the mould, fungal infection of kernels was poorly associated with insect damage. ECB infestation resulted in grain yield losses not exceeding 2.5%.


Assuntos
Aspergillus flavus/fisiologia , Mariposas/crescimento & desenvolvimento , Mariposas/microbiologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/parasitologia , Zea mays/parasitologia , Animais , Doenças das Plantas/prevenção & controle
5.
Bioresour Technol ; 120: 180-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22797083

RESUMO

In this series of laboratory experiments, the feasibility of using moving bed biofilm carriers (MBBC) manufactured from existing bioplastic-based products for the removal of bisphenol A, oseltamivir, and atrazine from wastewater was evaluated. After 10-d incubation, cumulative evolution of (14)CO(2) from control (no MBBC) wastewater spiked with (14)C-labeled bisphenol A, oseltamivir or atrazine, accounted for approximately 18%, 7% and 3.5% of the total added radioactivity, respectively. When wastewater samples were incubated with freely moving carriers, greater removal of the three chemicals was observed. More specifically, cumulative (14)CO(2) evolution of the three xenobiotics increased of 34%, 49%, and 66%, with respect to the control, respectively. Removal efficiency of MBBC was significantly increased by inoculating these bioplastic carriers with bioremediation bacterial strains. Results from this study suggest that the concept behind the moving bed biofilm reactor technology can also be extended to biodegradable carriers inoculated with bioremediation microorganisms.


Assuntos
Biofilmes , Plásticos/química , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentação , Purificação da Água/métodos , Bactérias/genética , Aderência Bacteriana , Biodegradação Ambiental , Minerais/química , Movimento , Reação em Cadeia da Polimerase , Poluentes Químicos da Água/química
6.
Chemosphere ; 89(2): 136-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22717162

RESUMO

Increasing environmental concerns and the introduction of technologies based on renewable resources have stimulated the replacement of persistent petroleum-derived plastics with biodegradable plastics from biopolymers. As a consequence, a variety of products are currently manufactured from bioplastic, including carrier bags. This series of studies investigated the deterioration of carrier bags made with Mater-Bi (MB), a starch-based bioplastic, in soil, compost and two aquatic ecosystems, a littoral marsh and seawater. Results from the laboratory study indicated that bioplastic carrier bags were rapidly deteriorated in soil and compost. After three months of incubation, weight loss of specimens was of 37% and 43% in soil and compost, respectively. Conversely, little deterioration was observed in specimens buried in soil under field conditions or exposed to water of a littoral marsh and of the Adriatic Sea. These findings were consistent with the greater number of bacteria and especially fungi capable of degrading MB that were recovered from soil and compost with respect to the two aquatic ecosystems. Considering that a variety of microbial isolates are capable of using MB as a source of carbon, a new alternative to recycle these MB-based carrier bags was explored. More specifically, starchy residues from bags were fermented by the fungus Rhizopus oryzae to produce up to 35 mg of lactic acid per g of bag residues.


Assuntos
Meio Ambiente , Plásticos/química , Plásticos/metabolismo , Reciclagem/métodos , Bactérias/metabolismo , Biodegradação Ambiental , Poluição Ambiental/prevenção & controle , Fungos/metabolismo , Ácido Láctico/biossíntese , Oceanos e Mares , Solo/química , Amido/química , Áreas Alagadas
7.
Chemosphere ; 63(9): 1539-45, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16289696

RESUMO

Recent monitoring investigations have shown that antimicrobial agents used in veterinary medicine can cause non-point source contamination of soils through manure spreading. In the present study, the effect of the antimicrobial agent sulfamethazine (sulfadimidine) on degradation and sorption of the herbicide metolachlor in a sandy loam soil was studied. In soil samples treated with sulfamethazine at two concentrations (15 and 150 microg kg(-1) soil), metolachlor persistence was not different than of that observed in untreated samples. These results were supported by the absence of effects of both sulfamethazine concentration levels on the size of the culturable soil bacteria population. Equilibrating soil samples with metolachlor solutions containing equivalent sulfamethazine concentrations did not lead to any significant effects on metolachlor sorption, suggesting that, under the conditions of the present experiment, sulfamethazine did not affect metolachlor bioavailability in soil. This laboratory investigation showed that concentrations of sulfamethazine in the microg kg(-1) range did not cause significant effects on metolachlor degradation and sorption thus not affecting the main processes ruling its environmental fate in soil.


Assuntos
Acetamidas/metabolismo , Anti-Infecciosos/farmacologia , Poluentes do Solo/metabolismo , Solo , Sulfametazina/farmacologia , Adsorção , Anti-Infecciosos/farmacocinética , Disponibilidade Biológica , Esterco , Sulfametazina/farmacocinética
8.
J Agric Food Chem ; 53(10): 4110-7, 2005 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-15884847

RESUMO

In modern agricultural systems employing conservation tillage practices, glyphosate is widely used as a preplant burndown herbicide in a wide range of crops. Conservation tillage systems are characterized by a significant presence of crop residues at the soil surface so that glyphosate is applied to a soil matrix rich in poorly decomposed crop residues. Incorporation of corn residues in the range from 0.5 to 4% caused different effects on mineralization and sorption of [14C]glyphosate in sandy and sandy loam soils. More specifically, low levels of incorporated corn residues did not affect or slightly stimulated herbicide mineralization in the sandy and sandy loam soils, respectively. In the sandy soil, incorporation of the highest level of corn residues (4%) caused a decrease in [14C]glyphosate mineralization. [14C]Glyphosate sorption on both soil types was reduced in samples receiving high amounts of incorporated corn residues.


Assuntos
Glicina/análogos & derivados , Glicina/análise , Glicina/química , Herbicidas/química , Minerais/química , Solo/análise , Zea mays/química , Adsorção , Radioisótopos de Carbono , Fenômenos Químicos , Físico-Química , Concentração de Íons de Hidrogênio , Microbiologia do Solo , Glifosato
9.
J Environ Qual ; 33(5): 1720-32, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15356232

RESUMO

The need to quantitatively predict pesticide runoff and erosion under cropping system management has gained increasing importance. In Europe, predictive models have not yet been fully validated because of the lack of field data sets. The objective of this study was to validate the capability of PRZM (Pesticide Root Zone Model) 3.12 to predict water runoff, sediment erosion, and associated transport of atrazine (6-chloro-N(2)-ethyl-N(4)-isopropyl-1,3,5-triazine-2,4-diamine), terbuthylazine (N(2)-tert-butyl-6-chloro-N(4)-ethyl-1,3,5-triazine-2,4-diamine), and metolachlor [2-chloro-6'-ethyl-N-(2-methoxy-l-methylethyl)acet-o-toluidide] under common tillage management practices found in northern Italy. A 2-yr field data set was used to evaluate the model. Results showed that the model could qualitatively simulate significant differences of water runoff, soil erosion, and associated herbicide losses between conventional tillage (CT) and minimum tillage (MT) for a winter barley (Hordeum vulgare L.) cover crop. For MT, water runoff, soil erosion, herbicide losses in water runoff and eroded sediment, and the proportion of herbicide loss via sediment erosion were significantly lower than for CT. The model failed to correctly simulate event-based herbicide concentration, water runoff, and soil erosion. The model usually underestimated pesticide runoff events with high rainfall intensity and low daily precipitation volume, and overestimated runoff events with low intensity and high volume. The main reason was that the description of runoff and erosion processes is rather empirical in the model and not physically based. Moreover, model calculations do not adequately reflect the relationships between soil erosion intensity and chemical concentration in sediment losses, leading to discrepancies between predictions and field observations.


Assuntos
Agricultura , Herbicidas/análise , Modelos Teóricos , Poluentes Químicos da Água/análise , Previsões , Hordeum , Itália , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA