Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mol Cell ; 81(17): 3637-3649.e5, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478654

RESUMO

The off-target activity of the CRISPR-associated nuclease Cas9 is a potential concern for therapeutic genome editing applications. Although high-fidelity Cas9 variants have been engineered, they exhibit varying efficiencies and have residual off-target effects, limiting their applicability. Here, we show that CRISPR hybrid RNA-DNA (chRDNA) guides provide an effective approach to increase Cas9 specificity while preserving on-target editing activity. Across multiple genomic targets in primary human T cells, we show that 2'-deoxynucleotide (dnt) positioning affects guide activity and specificity in a target-dependent manner and that this can be used to engineer chRDNA guides with substantially reduced off-target effects. Crystal structures of DNA-bound Cas9-chRDNA complexes reveal distorted guide-target duplex geometry and allosteric modulation of Cas9 conformation. These structural effects increase specificity by perturbing DNA hybridization and modulating Cas9 activation kinetics to disfavor binding and cleavage of off-target substrates. Overall, these results pave the way for utilizing customized chRDNAs in clinical applications.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Linfócitos T/metabolismo , Proteína 9 Associada à CRISPR/fisiologia , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/fisiologia , DNA/genética , Endonucleases/genética , Edição de Genes/métodos , Técnicas Genéticas , Genoma/genética , Genômica/métodos , Humanos , Leucócitos Mononucleares/metabolismo , Conformação Molecular , RNA Guia de Cinetoplastídeos/genética , Relação Estrutura-Atividade , Linfócitos T/fisiologia
3.
Nat Biotechnol ; 37(12): 1471-1477, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740839

RESUMO

Type I CRISPR-Cas systems are the most abundant adaptive immune systems in bacteria and archaea1,2. Target interference relies on a multi-subunit, RNA-guided complex called Cascade3,4, which recruits a trans-acting helicase-nuclease, Cas3, for target degradation5-7. Type I systems have rarely been used for eukaryotic genome engineering applications owing to the relative difficulty of heterologous expression of the multicomponent Cascade complex. Here, we fuse Cascade to the dimerization-dependent, non-specific FokI nuclease domain8-11 and achieve RNA-guided gene editing in multiple human cell lines with high specificity and efficiencies of up to ~50%. FokI-Cascade can be reconstituted via an optimized two-component expression system encoding the CRISPR-associated (Cas) proteins on a single polycistronic vector and the guide RNA (gRNA) on a separate plasmid. Expression of the full Cascade-Cas3 complex in human cells resulted in targeted deletions of up to ~200 kb in length. Our work demonstrates that highly abundant, previously untapped type I CRISPR-Cas systems can be harnessed for genome engineering applications in eukaryotic cells.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Escherichia coli , Genoma/genética , Células HEK293 , Humanos , Modelos Genéticos
4.
Nat Methods ; 14(6): 600-606, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459459

RESUMO

RNA-guided CRISPR-Cas9 endonucleases are widely used for genome engineering, but our understanding of Cas9 specificity remains incomplete. Here, we developed a biochemical method (SITE-Seq), using Cas9 programmed with single-guide RNAs (sgRNAs), to identify the sequence of cut sites within genomic DNA. Cells edited with the same Cas9-sgRNA complexes are then assayed for mutations at each cut site using amplicon sequencing. We used SITE-Seq to examine Cas9 specificity with sgRNAs targeting the human genome. The number of sites identified depended on sgRNA sequence and nuclease concentration. Sites identified at lower concentrations showed a higher propensity for off-target mutations in cells. The list of off-target sites showing activity in cells was influenced by sgRNP delivery, cell type and duration of exposure to the nuclease. Collectively, our results underscore the utility of combining comprehensive biochemical identification of off-target sites with independent cell-based measurements of activity at those sites when assessing nuclease activity and specificity.


Assuntos
Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
5.
Mol Cell ; 63(4): 633-646, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27499295

RESUMO

The repair outcomes at site-specific DNA double-strand breaks (DSBs) generated by the RNA-guided DNA endonuclease Cas9 determine how gene function is altered. Despite the widespread adoption of CRISPR-Cas9 technology to induce DSBs for genome engineering, the resulting repair products have not been examined in depth. Here, the DNA repair profiles of 223 sites in the human genome demonstrate that the pattern of DNA repair following Cas9 cutting at each site is nonrandom and consistent across experimental replicates, cell lines, and reagent delivery methods. Furthermore, the repair outcomes are determined by the protospacer sequence rather than genomic context, indicating that DNA repair profiling in cell lines can be used to anticipate repair outcomes in primary cells. Chemical inhibition of DNA-PK enabled dissection of the DNA repair profiles into contributions from c-NHEJ and MMEJ. Finally, this work elucidates a strategy for using "error-prone" DNA-repair machinery to generate precise edits.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Endonucleases/metabolismo , Edição de Genes , Perfilação da Expressão Gênica/métodos , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR , Endonucleases/genética , Células HCT116 , Células HEK293 , Humanos , Células K562 , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Fatores de Tempo , Transfecção
6.
Sci Rep ; 5: 7983, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613906

RESUMO

Sonic hedgehog (SHH) is a conserved protein involved in embryonic tissue patterning and development. SHH signaling has been reported as a cardio-protective pathway via muscle repair-associated angiogenesis. The goal of this study was to investigate the role of SHH signaling pathway in the adult myocardium in physiological situation and after ischemia-reperfusion. We show in a rat model of ischemia-reperfusion that stimulation of SHH pathway, either by a recombinant peptide or shed membranes microparticles harboring SHH ligand, prior to reperfusion reduces both infarct size and subsequent arrhythmias by preventing ventricular repolarization abnormalities. We further demonstrate in healthy animals a reduction of QTc interval mediated by NO/cGMP pathway leading to the shortening of ventricular cardiomyocytes action potential duration due to the activation of an inward rectifying potassium current sharing pharmacological and electrophysiological properties with ATP-dependent potassium current. Besides its effect on both angiogenesis and endothelial dysfunction we demonstrate here a novel cardio-protective effect of SHH acting directly on the cardiomyocytes. This emphasizes the pleotropic effect of SHH pathway as a potential cardiac therapeutic target.


Assuntos
GMP Cíclico/metabolismo , Proteínas Hedgehog/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Endogâmicos WKY
7.
Cardiovasc Res ; 103(1): 90-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24802330

RESUMO

AIMS: TRPM2 is a Ca(2+)-permeable cationic channel of the transient receptor potential (TRP) superfamily that is linked to apoptotic signalling. Its involvement in cardiac pathophysiology is unknown. The aim of this study was to determine whether the pro-apoptotic cytokine tumour necrosis factor-α (TNF-α) induces a TRPM2-like current in murine ventricular cardiomyocytes. METHODS AND RESULTS: Adult isolated cardiomyocytes from C57BL/6 mice were exposed to TNF-α (10 ng/mL). Western blotting showed TRPM2 expression, which was not changed after TNF-α incubation. Using patch clamp in whole-cell configuration, a non-specific cation current was recorded after exposure to TNF-α (ITNF), which reached maximal steady-state amplitude after 3 h incubation. ITNF was inhibited by the caspase-8 inhibitor z-IETD-fmk, the antioxidant N-acetylcysteine, and the TRPM2 inhibitors clotrimazole, N-(P-amylcinnamoyl) anthranilic acid and flufenamic acid (FFA). TRPM2 has previously been shown to be activated by ADP-ribose, which is produced by poly(ADP-ribose) polymerase 1 (PARP-1). TNF-α exposure resulted in increased poly-ADP-ribosylation of proteins and the PARP-1 inhibitor 3-aminobenzamide inhibited ITNF. TNF-α exposure increased the mitochondrial production of reactive oxygen species (ROS; measured with the fluorescent indicator MitoSOX Red), and this increase was blocked by the caspase-8 inhibitor z-IETD-fmk. Clotrimazole and TRPM2 inhibitory antibody decreased TNF-α-induced cardiomyocyte death. CONCLUSION: These results demonstrate that TNF-α induces a TRPM2 current in adult ventricular cardiomyocytes. TNF-α induces caspase-8 activation leading to ROS production, PARP-1 activation, and ADP-ribose production. TNF-induced TRPM2 activation may contribute to cardiomyocyte cell death.


Assuntos
Caspase 8/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/efeitos dos fármacos , Clotrimazol/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Ativação Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Técnicas de Patch-Clamp , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA