Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 6(2)2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28159817

RESUMO

BACKGROUND: The structural elements of the vascular wall, namely, extracellular matrix and smooth muscle cells (SMCs), contribute to the overall stiffness of the vessel. In this study, we examined the crosslinking-dependent and crosslinking-independent roles of tissue transglutaminase (TG2) in vascular function and stiffness. METHODS AND RESULTS: SMCs were isolated from the aortae of TG2-/- and wild-type (WT) mice. Cell adhesion was examined by using electrical cell-substrate impedance sensing and PicoGreen assay. Cell motility was examined using a Boyden chamber assay. Cell proliferation was examined by electrical cell-substrate impedance sensing and EdU incorporation assays. Cell micromechanics were studied using magnetic torsion cytometry and spontaneous nanobead tracer motions. Aortic mechanics were examined by tensile testing. Vasoreactivity was studied by wire myography. SMCs from TG2-/- mice had delayed adhesion, reduced motility, and accelerated de-adhesion and proliferation rates compared with those from WT. TG2-/- SMCs were stiffer and displayed fewer cytoskeletal remodeling events than WT. Collagen assembly was delayed in TG2-/- SMCs and recovered with adenoviral transduction of TG2. Aortic rings from TG2-/- mice were less stiff than those from WT; stiffness was partly recovered by incubation with guinea pig liver TG2 independent of crosslinking function. TG2-/- rings showed augmented response to phenylephrine-mediated vasoconstriction when compared with WT. In human coronary arteries, vascular media and plaque, high abundance of fibronectin expression, and colocalization with TG2 were observed. CONCLUSIONS: TG2 modulates vascular function/tone by altering SMC contractility independent of its crosslinking function and contributes to vascular stiffness by regulating SMC proliferation and matrix remodeling.


Assuntos
Aorta Torácica/enzimologia , Colágeno/metabolismo , Vasos Coronários/fisiologia , Proteínas de Ligação ao GTP/biossíntese , Músculo Liso Vascular/fisiologia , Transglutaminases/biossíntese , Rigidez Vascular/fisiologia , Animais , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Apoptose , Western Blotting , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Vasos Coronários/citologia , Vasos Coronários/enzimologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Modelos Animais , Músculo Liso Vascular/citologia , Músculo Liso Vascular/enzimologia , Miografia , Proteína 2 Glutamina gama-Glutamiltransferase , Análise de Onda de Pulso , Análise Serial de Tecidos
2.
Am J Physiol Heart Circ Physiol ; 308(10): H1221-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25770242

RESUMO

Aortic stiffness, a predictive parameter in cardiovascular medicine, is blood pressure dependent and experimentally requires isobaric measurement for meaningful comparison. Vasoactive drug administration to change peripheral resistance and blood pressure allows such isobaric comparison but may alter large conduit artery wall tension, directly changing aortic stiffness. This study quantifies effects of sodium nitroprusside (SNP, vasodilator) and phenylephrine (PE, vasoconstrictor) on aortic stiffness measured by aortic pulse wave velocity (aPWV) assessed by invasive pressure catheterization in anaesthetized Sprague-Dawley rats (n = 7). This was compared with nondrug-dependent alteration of blood pressure through reduced venous return induced by partial vena cava occlusion. In vivo drug concentration was estimated by modeling clearance rates. Ex vivo responses of excised thoracic and abdominal aortic rings to drugs was measured using myography. SNP administration did not alter aPWV compared with venous occlusion (P = 0.21-0.87). There was a 5% difference in aPWV with PE administration compared with venous occlusion (P < 0.05). The estimated in vivo maximum concentration of PE (7.0 ± 1.8 ×10(-7) M) and SNP (4.2 ± 0.6 ×10(-7) M) caused ex vivo equivalent contraction of 52 mmHg (thoracic) and 112 mmHg (abdominal) and relaxation of 96% (both abdominal and thoracic), respectively, despite having a negligible effect on aPWV in vivo. This study demonstrates that vasoactive drugs administered to alter systemic blood pressure have a negligible effect on aPWV and provide a useful tool to study pressure-normalized and pressure-dependent aPWV in large conduit arteries in vivo. However, similar drug concentrations affect aortic ring wall tension ex vivo. Future studies investigating in vivo and ex vivo kinetics will need to elucidate mechanisms for this marked difference.


Assuntos
Aorta/fisiologia , Pressão Arterial , Nitroprussiato/farmacologia , Fenilefrina/farmacologia , Vasoconstrição , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Masculino , Análise de Onda de Pulso , Ratos , Ratos Sprague-Dawley , Reflexo
3.
Am J Physiol Heart Circ Physiol ; 305(6): H803-10, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23873798

RESUMO

Nitric oxide (NO) can modulate arterial stiffness by regulating both functional and structural changes in the arterial wall. Tissue transglutaminase (TG2) has been shown to contribute to increased central aortic stiffness by catalyzing the cross-linking of matrix proteins. NO S-nitrosylates and constrains TG2 to the cytosolic compartment and thereby holds its cross-linking function latent. In the present study, the role of endothelial NO synthase (eNOS)-derived NO in regulating TG2 function was studied using eNOS knockout mice. Matrix-associated TG2 and TG2 cross-linking function were higher, whereas TG2 S-nitrosylation was lower in the eNOS(-/-) compared with wild-type (WT) mice. Pulse-wave velocity (PWV) and blood pressure measured noninvasively were elevated in the eNOS(-/-) compared with WT mice. Intact aortas and decellularized aortic tissue scaffolds of eNOS(-/-) mice were significantly stiffer, as determined by tensile testing. The carotid arteries of the eNOS(-/-) mice were also stiffer, as determined by pressure-dimension analysis. Invasive methods to determine the PWV-mean arterial pressure relationship showed that PWV in eNOS(-/-) and WT diverge at higher mean arterial pressure. Thus eNOS-derived NO regulates TG2 localization and function and contributes to vascular stiffness.


Assuntos
Aorta/fisiologia , Pressão Sanguínea/fisiologia , Endotélio Vascular/fisiologia , Proteínas de Ligação ao GTP/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Transglutaminases/biossíntese , Rigidez Vascular/fisiologia , Animais , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/genética , Proteína 2 Glutamina gama-Glutamiltransferase , Estresse Mecânico , Resistência à Tração/fisiologia
4.
Biomed Eng Online ; 10: 20, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21426581

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is an increasingly prevalent pathogen capable of causing severe vascular infections. The goal of this work was to investigate the role of shear stress in early adhesion events. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed to MRSA for 15-60 minutes and shear stresses of 0-1.2 Pa in a parallel plate flow chamber system. Confocal microscopy stacks were captured and analyzed to assess the number of MRSA. Flow chamber parameters were validated using micro-particle image velocimetry (PIV) and computational fluid dynamics modelling (CFD). RESULTS: Under static conditions, MRSA adhered to, and were internalized by, more than 80% of HUVEC at 15 minutes, and almost 100% of the cells at 1 hour. At 30 minutes, there was no change in the percent HUVEC infected between static and low flow (0.24 Pa), but a 15% decrease was seen at 1.2 Pa. The average number of MRSA per HUVEC decreased 22% between static and 0.24 Pa, and 37% between 0.24 Pa and 1.2 Pa. However, when corrected for changes in bacterial concentration near the surface due to flow, bacteria per area was shown to increase at 0.24 Pa compared to static, with a subsequent decline at 1.2 Pa. CONCLUSIONS: This study demonstrates that MRSA adhesion to endothelial cells is strongly influenced by flow conditions and time, and that MSRA adhere in greater numbers to regions of low shear stress. These areas are common in arterial bifurcations, locations also susceptible to generation of atherosclerosis.


Assuntos
Aderência Bacteriana , Células Endoteliais/microbiologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Estresse Mecânico , Veias Umbilicais/citologia , Infecções Bacterianas/sangue , Células Cultivadas , Endotélio Vascular/citologia , Humanos , Hidrodinâmica , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA