Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(5)2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36899878

RESUMO

Neutrophils are a vital component of the innate immune system and play an essential function in the recognition and clearance of bacterial and fungal pathogens. There is great interest in understanding mechanisms of neutrophil dysfunction in the setting of disease and deciphering potential side effects of immunomodulatory drugs on neutrophil function. We developed a high throughput flow cytometry-based assay for detecting changes to four canonical neutrophil functions following biological or chemical triggers. Our assay detects neutrophil phagocytosis, reactive oxygen species (ROS) generation, ectodomain shedding, and secondary granule release in a single reaction mixture. By selecting fluorescent markers with minimal spectral overlap, we merge four detection assays into one microtiter plate-based assay. We demonstrate the response to the fungal pathogen, Candida albicans and validate the assay's dynamic range using the inflammatory cytokines G-CSF, GM-CSF, TNFα, and IFNγ. All four cytokines increased ectodomain shedding and phagocytosis to a similar degree while GM-CSF and TNFα were more active in degranulation when compared to IFNγ and G-CSF. We further demonstrated the impact of small molecule inhibitors such as kinase inhibition downstream of Dectin-1, a critical lectin receptor responsible for fungal cell wall recognition. Bruton's tyrosine kinase (Btk), Spleen tyrosine kinase (Syk), and Src kinase inhibition suppressed all four measured neutrophil functions but all functions were restored with lipopolysaccharide co-stimulation. This new assay allows for multiple comparisons of effector functions and permits identification of distinct subpopulations of neutrophils with a spectrum of activity. Our assay also offers the potential for studying the intended and off-target effects of immunomodulatory drugs on neutrophil responses.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neutrófilos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Citometria de Fluxo , Agentes de Imunomodulação , Citocinas , Fator Estimulador de Colônias de Granulócitos/farmacologia
2.
J Leukoc Biol ; 111(6): 1133-1145, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35355310

RESUMO

The use of mature neutrophil (granulocyte) transfusions for the treatment of neutropenic patients with invasive fungal infections (IFIs) has been the focus of multiple clinical trials. Despite these efforts, the transfusion of mature neutrophils has resulted in limited clinical benefit, likely owing to problems of insufficient numbers and the very short lifespan of these donor cells. In this report, we employed a system of conditionally immortalized murine neutrophil progenitors that are capable of continuous expansion, allowing for the generation of unlimited numbers of homogenous granulocyte-macrophage progenitors (GMPs). These GMPs were assayed in vivo to demonstrate their effect on survival in 2 models of IFI: candidemia and pulmonary aspergillosis. Mature neutrophils derived from GMPs executed all cardinal functions of neutrophils. Transfused GMPs homed to the bone marrow and spleen, where they completed normal differentiation to mature neutrophils. These neutrophils were capable of homing and extravasation in response to inflammatory stimuli using a sterile peritoneal challenge model. Furthermore, conditionally immortalized GMP transfusions significantly improved survival in models of candidemia and pulmonary aspergillosis. These data confirm the therapeutic benefit of prophylactic GMP transfusions in the setting of neutropenia and encourage development of progenitor cellular therapies for the management of fungal disease in high-risk patients.


Assuntos
Infecções Fúngicas Invasivas , Neutropenia , Neutrófilos , Animais , Candidemia , Terapia Baseada em Transplante de Células e Tecidos , Infecções Fúngicas Invasivas/prevenção & controle , Transfusão de Leucócitos , Camundongos , Neutropenia/terapia , Neutrófilos/transplante , Aspergilose Pulmonar
3.
J Immunol ; 208(7): 1664-1674, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35277418

RESUMO

An impaired neutrophil response to pathogenic fungi puts patients at risk for fungal infections with a high risk of morbidity and mortality. Acquired neutrophil dysfunction in the setting of iatrogenic immune modulators can include the inhibition of critical kinases such as spleen tyrosine kinase (Syk). In this study, we used an established system of conditionally immortalized mouse neutrophil progenitors to investigate the ability to augment Syk-deficient neutrophil function against Candida albicans with TLR agonist signaling. LPS, a known immunomodulatory molecule derived from Gram-negative bacteria, was capable of rescuing effector functions of Syk-deficient neutrophils, which are known to have poor fungicidal activity against Candida species. LPS priming of Syk-deficient mouse neutrophils demonstrates partial rescue of fungicidal activity, including phagocytosis, degranulation, and neutrophil swarming, but not reactive oxygen species production against C. albicans, in part due to c-Fos activation. Similarly, LPS priming of human neutrophils rescues fungicidal activity in the presence of pharmacologic inhibition of Syk and Bruton's tyrosine kinase (Btk), both critical kinases in the innate immune response to fungi. In vivo, neutropenic mice were reconstituted with wild-type or Syk-deficient neutrophils and challenged i.p. with C. albicans. In this model, LPS improved wild-type neutrophil homing to the fungal challenge, although Syk-deficient neutrophils did not persist in vivo, speaking to its crucial role on in vivo persistence. Taken together, we identify TLR signaling as an alternate activation pathway capable of partially restoring neutrophil effector function against Candida in a Syk-independent manner.


Assuntos
Candidíase , Neutrófilos , Transdução de Sinais , Quinase Syk , Receptores Toll-Like , Animais , Candida albicans , Candidíase/imunologia , Degranulação Celular , Humanos , Imunidade Inata , Camundongos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Quinase Syk/metabolismo , Receptores Toll-Like/metabolismo
4.
PLoS One ; 17(1): e0262342, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35025929

RESUMO

PURPOSE: Coronavirus disease-2019 (COVID-19) is associated with a wide spectrum of clinical symptoms including acute respiratory failure. Biomarkers that can predict outcomes in patients with COVID-19 can assist with patient management. The aim of this study is to evaluate whether procalcitonin (PCT) can predict clinical outcome and bacterial superinfection in patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). METHODS: Adult patients diagnosed with SARS-CoV-2 by nasopharyngeal PCR who were admitted to a tertiary care center in Boston, MA with SARS-CoV-2 infection between March 17 and April 30, 2020 with a baseline PCT value were studied. Patients who were presumed positive for SARS-CoV-2, who lacked PCT levels, or who had a positive urinalysis with negative cultures were excluded. Demographics, clinical and laboratory data were extracted from the electronic medical records. RESULTS: 324 patient charts were reviewed and grouped by clinical and microbiologic outcomes by day 28. Baseline PCT levels were significantly higher for patients who were treated for true bacteremia (p = 0.0005) and bacterial pneumonia (p = 0.00077) compared with the non-bacterial infection group. Baseline PCT positively correlated with the NIAID ordinal scale and survival over time. When compared to other inflammatory biomarkers, PCT showed superiority in predicting bacteremia. CONCLUSIONS: Baseline PCT levels are associated with outcome and bacterial superinfection in patients hospitalized with SARS-CoV-2.


Assuntos
Infecções Bacterianas/metabolismo , COVID-19/metabolismo , Pró-Calcitonina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Boston , Estudos de Casos e Controles , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2/patogenicidade
5.
Med Mycol Case Rep ; 28: 39-41, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32420013

RESUMO

Necrotizing fasciitis is a potentially fatal soft tissue infection that requires prompt clinical suspicion, pharmacological and surgical interventions. Bacterial pathogens, such as beta-hemolytic streptococcus and Staphylococcus aureus, are the main etiology of necrotizing fasciitis, however, rare cases caused by fungal pathogens, such as Candida albicans, have been reported following trauma. Here, we present the first case of C. albicans necrotizing fasciitis following an elective surgical procedure in an immunocompetent adult.

6.
mBio ; 11(3)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398316

RESUMO

Invasive fungal infections constitute a lethal threat, with patient mortality as high as 90%. The incidence of invasive fungal infections is increasing, especially in the setting of patients receiving immunomodulatory agents, chemotherapy, or immunosuppressive medications following solid-organ or bone marrow transplantation. In addition, inhibitors of spleen tyrosine kinase (Syk) have been recently developed for the treatment of patients with refractory autoimmune and hematologic indications. Neutrophils are the initial innate cellular responders to many types of pathogens, including invasive fungi. A central process governing neutrophil recognition of fungi is through lectin binding receptors, many of which rely on Syk for cellular activation. We previously demonstrated that Syk activation is essential for cellular activation, phagosomal maturation, and elimination of phagocytosed fungal pathogens in macrophages. Here, we used combined genetic and chemical inhibitor approaches to evaluate the importance of Syk in the response of neutrophils to Candida species. We took advantage of a Cas9-expressing neutrophil progenitor cell line to generate isogenic wild-type and Syk-deficient neutrophils. Syk-deficient neutrophils are unable to control the human pathogens Candida albicans, Candida glabrata, and Candida auris Neutrophil responses to Candida species, including the production of reactive oxygen species and of cytokines such as tumor necrosis factor alpha (TNF-α), the formation of neutrophil extracellular traps (NETs), phagocytosis, and neutrophil swarming, appear to be critically dependent on Syk. These results demonstrate an essential role for Syk in neutrophil responses to Candida species and raise concern for increased fungal infections with the development of Syk-modulating therapeutics.IMPORTANCE Neutrophils are recognized to represent significant immune cell mediators for the clearance and elimination of the human-pathogenic fungal pathogen Candida The sensing of fungi by innate cells is performed, in part, through lectin receptor recognition of cell wall components and downstream cellular activation by signaling components, including spleen tyrosine kinase (Syk). While the essential role of Syk in macrophages and dendritic cells is clear, there remains uncertainty with respect to its contribution in neutrophils. In this study, we demonstrated that Syk is critical for multiple cellular functions in neutrophils responding to major human-pathogenic Candida species. These data not only demonstrate the vital nature of Syk with respect to the control of fungi by neutrophils but also warn of the potential infectious complications arising from the recent clinical development of novel Syk inhibitors for hematologic and autoimmune disorders.


Assuntos
Candida/patogenicidade , Candidíase/imunologia , Regulação da Expressão Gênica , Neutrófilos/imunologia , Quinase Syk/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/microbiologia , Candida/classificação , Linhagem Celular , Citocinas/imunologia , Armadilhas Extracelulares/imunologia , Feminino , Masculino , Camundongos , Neutrófilos/microbiologia , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Quinase Syk/genética
7.
Mol Cancer Res ; 16(12): 1952-1964, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30082484

RESUMO

Breast cancer remains the most common malignant disease in women worldwide. Despite advances in detection and therapies, studies are still needed to understand the mechanisms underlying this cancer. Cancer stem cells (CSC) play an important role in tumor formation, growth, drug resistance, and recurrence. Here, it is demonstrated that the transcription factor RUNX1, well known as essential for hematopoietic differentiation, represses the breast cancer stem cell (BCSC) phenotype and suppresses tumor growth in vivo. The current studies show that BCSCs sorted from premalignant breast cancer cells exhibit decreased RUNX1 levels, whereas ectopic expression of RUNX1 suppresses tumorsphere formation and reduces the BCSC population. RUNX1 ectopic expression in breast cancer cells reduces migration, invasion, and in vivo tumor growth (57%) in mouse mammary fat pad. Mechanistically, RUNX1 functions to suppress breast cancer tumor growth through repression of CSC activity and direct inhibition of ZEB1 expression. Consistent with these cellular and biochemical results, clinical findings using patient specimens reveal that the highest RUNX1 levels occur in normal mammary epithelial cells and that low RUNX1 expression in tumors is associated with poor patient survival. IMPLICATIONS: The key finding that RUNX1 represses stemness in several breast cancer cell lines points to the importance of RUNX1 in other solid tumors where RUNX1 may regulate CSC properties.


Assuntos
Neoplasias da Mama/patologia , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Neoplásicas/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Estadiamento de Neoplasias , Transplante de Neoplasias , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA