Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(45): 23578-23588, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27634046

RESUMO

Glutathione peroxidase 4 (GPX4) and arachidonic acid 15-lipoxygenase (ALOX15) are antagonizing enzymes in the metabolism of hydroperoxy lipids. In spermatoid cells and/or in the male reproductive system both enzymes are apparently expressed, and GPX4 serves as anti-oxidative enzyme but also as a structural protein. In this study we explored whether germ line inactivation of the Alox15 gene might rescue male subfertility induced by heterozygous expression of catalytically silent Gpx4. To address this question we employed Gpx4 knock-in mice expressing the Sec46Ala-Gpx4 mutant, in which the catalytic selenocysteine was replaced by a redox inactive alanine. Because homozygous Gpx4 knock-in mice (Sec46Ala-Gpx4+/+) are not viable we created heterozygous animals (Sec46Ala-Gpx4+/-) and crossed them with Alox15 knock-out mice (Alox15-/-). Male Sec46Ala-Gpx4+/- mice, but not their female littermates, were subfertile. Sperm extracted from the epididymal cauda showed strongly impaired motility characteristics and severe structural midpiece alterations (swollen mitochondria, intramitochondrial vacuoles, disordered mitochondrial capsule). Despite these structural alterations, they exhibited similar respiration characteristics than wild-type sperm. When Sec46Ala-Gpx4+/- mice were crossed with Alox15-deficient animals, the resulting males (Sec46Ala-Gpx4+/-+Alox15-/-) showed normalized fertility, and sperm motility was reimproved to wild-type levels. Taken together these data suggest that systemic inactivation of the Alox15 gene normalizes the reduced fertility of male Sec46Ala-Gpx4+/- mice by improving the motility of their sperm. If these data can be confirmed in humans, ALOX15 inhibitors might counteract male infertility related to GPX4 deficiency.


Assuntos
Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Glutationa Peroxidase/genética , Infertilidade Masculina/genética , Animais , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Regulação para Baixo , Feminino , Técnicas de Introdução de Genes , Glutationa Peroxidase/metabolismo , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Estresse Oxidativo , Oxigênio/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Motilidade dos Espermatozoides , Espermatozoides/citologia , Espermatozoides/metabolismo , Espermatozoides/patologia
2.
Reproduction ; 130(5): 615-26, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16264092

RESUMO

One of the essential properties of mammalian, including sperm, plasma membranes is a stable transversal lipid asymmetry with the aminophospholipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), typically in the inner, cytoplasmic leaflet. The maintenance of this nonrandom lipid distribution is important for the homeostasis of the cell. To clarify the relevance of lipid asymmetry to sperm function, we have studied the localization of PS in boar sperm cell membranes. By using labeled annexin V as a marker for PS and propidium iodide (PI) as a stain for nonviable cells in conjunction with different methods (flow cytometry, fluorescence and electron microscopy), we have assessed the surface exposure of PS in viable cells during sperm genesis, that is, before and during capacitation as well as after acrosome reaction. An approach was set up to address also the presence of PS in the outer acrosome membrane. The results show that PS is localized in the cytoplasmic leaflet of the plasma membrane as well as on the outer acrosome membrane. Our results further indicate the cytoplasmic localization of PS in the postacrosomal region. During capacitation and acrosome reaction of spermatozoa, PS does not become exposed on the outer surface of the viable cells. Only in a subpopulation of PI-positive sperm cells does PS became accessible upon capacitation. The stable cytoplasmic localization of PS in the plasma membrane, as well as in the outer acrosome membrane, is assumed to be essential for a proper genesis of sperm cells during capacitation and acrosome reaction.


Assuntos
Reação Acrossômica , Fosfatidilserinas/análise , Capacitação Espermática , Espermatozoides/química , Suínos/metabolismo , Acrossomo/química , Animais , Anexina A5/análise , Biomarcadores/análise , Membrana Celular/química , Membrana Celular/ultraestrutura , Sobrevivência Celular , Citometria de Fluxo , Masculino , Microscopia Eletrônica , Microscopia de Fluorescência , Aglutinina de Amendoim/análise , Fosfatidilserinas/metabolismo , Propídio/análise , Espermatozoides/ultraestrutura , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA