Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem J ; 397(1): 121-30, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16551273

RESUMO

MRP1 (multidrug resistance protein 1) couples ATP binding/hydrolysis at its two non-equivalent NBDs (nucleotide-binding domains) with solute transport. Some of the NBD1 mutants, such as W653C, decreased affinity for ATP at the mutated site, but increased the rate of ATP-dependent solute transport. In contrast, other NBD1 mutants, such as K684L, had decreased ATP binding and rate of solute transport. We now report that mutations of the Walker A lysine residue, K684L and K1333L, significantly alter the tertiary structure of the protein. Due to elimination of the positively charged group and conformational alterations, the K684L mutation greatly decreases the affinity for ATP at the mutated NBD1 and affects ATP binding at the unmutated NBD2. Although K684L-mutated NBD1 can bind ATP at higher concentrations, the bound nucleotide at that site is not efficiently hydrolysed. All these alterations result in decreased ATP-dependent solute transport to approx. 40% of the wild-type. In contrast, the K1333L mutation affects ATP binding and hydrolysis at the mutated NBD2 only, leading to decreased ATP-dependent solute transport to approx. 11% of the wild-type. Consistent with their relative transport activities, the amount of vincristine accumulated in cells is in the order of K1333L> or =CFTR (cystic fibrosis transmembrane conductance regulator)>K684L>>>wild-type MRP1. Although these mutants retain partial solute transport activities, the cells expressing them are not multidrug-resistant owing to inefficient export of the anticancer drugs by these mutants. This indicates that even partial inhibition of transport activity of MRP1 can reverse the multidrug resistance caused by this drug transporter.


Assuntos
Trifosfato de Adenosina/metabolismo , Resistência a Múltiplos Medicamentos/genética , Lisina/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Estrutura Terciária de Proteína , Animais , Transporte Biológico , Células Cultivadas , Cricetinae , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Rim/citologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Mutagênese Sítio-Dirigida
2.
Acc Chem Res ; 38(2): 117-26, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15709731

RESUMO

Multidrug transporter proteins promote the active transmembrane efflux of noxious drugs, thereby decreasing their accumulation in the intracellular medium and reducing their therapeutic efficiency. Expression of such proteins drastically reduces the efficiency of chemotherapeutic treatments against cancer and various infectious diseases. To overcome major difficulties related to the crystallization of membrane proteins, other experimental approaches have been developed to gain information on the structural changes involved in drug transport. We examine here and illustrate with a few examples how infrared and fluorescence spectroscopy can provide new insights into the structure of the membrane domains of multidrug transporters in particular. Such domains contain the drug-binding site(s) and mediate the passage of substrates across the cell membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Membrana Celular/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície
3.
Biochim Biophys Acta ; 1649(2): 119-22, 2003 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-12878029

RESUMO

The alpha-amylase precursor from the bacterium Pseudoalteromonas haloplanktis possesses a propeptide at the C-terminus possibly responsible for outer membrane translocation. Unlike the predicted beta-barrel of autotransporters, this C-terminal propeptide displays a noticeable alpha-helix content. It is connected to the enzyme by a disordered linker and has no significant interaction with the catalytic domain. The microcalorimetric pattern of the precursor also demonstrates that the stability of protein domains may evolve differently.


Assuntos
Temperatura Baixa , Precursores de Proteínas/química , Pseudoalteromonas/enzimologia , alfa-Amilases/química , Aclimatação , Varredura Diferencial de Calorimetria , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Conformação Proteica , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Amilases/biossíntese , alfa-Amilases/genética
4.
FEBS Lett ; 530(1-3): 197-203, 2002 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-12387892

RESUMO

LmrA confers multidrug resistance to Lactococcus lactis by mediating the extrusion of antibiotics, out of the bacterial membrane, using the energy derived from ATP hydrolysis. Cooperation between the cytosolic and membrane-embedded domains plays a crucial role in regulating the transport ATPase cycle of this protein. In order to demonstrate the existence of a structural coupling required for the cross-talk between drug transport and ATP hydrolysis, we studied specifically the dynamic changes occurring in the membrane-embedded and cytosolic domains of LmrA by combining infrared linear dichroic spectrum measurements in the course of H/D exchange with Trp fluorescence quenching by a water-soluble attenuator. This new experimental approach, which is of general interest in the study of membrane proteins, detects long-range conformational changes, transmitted between the membrane-embedded and cytosolic regions of LmrA. On the one hand, nucleotide binding and hydrolysis in the cytosolic nucleotide binding domain cause a repacking of the transmembrane helices. On the other hand, drug binding to the transmembrane helices affects both the structure of the cytosolic regions and the ATPase activity of the nucleotide binding domain.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Catálise , Membrana Celular , Citosol/metabolismo , Resistência Microbiana a Medicamentos , Hidrólise , Lactococcus lactis/efeitos dos fármacos , Lactococcus lactis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Biol Chem ; 277(7): 5008-16, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11741934

RESUMO

The dynamic changes occurring during the catalytic cycle of MDR3 P-glycoprotein (Pgp) and the role of each nucleotide-binding domain (NBD) in the transport process were investigated using attenuated total reflection Fourier transform infrared spectroscopy. For this purpose, wild-type Pgp and two mutations of homologous residues in each NBD were studied. On the one hand, we demonstrate here that, during its catalytic cycle, Pgp does not undergo secondary structure changes, but only modifications in its stability and accessibility to the external environment. On the other hand, amide H/D exchange kinetics demonstrate that homologous mutations in the two NBDs affect, in a different way, the dynamic properties of Pgp and also the dynamic changes occurring during ATP hydrolysis. These observations led to the conclusion that the NBDs have an asymmetric structure and different functions in the catalytic cycle of Pgp. Our data suggest that the release of drug from the membrane into the extracellular environment is due to decreased stability and/or increased accessibility to the external medium of the membrane-embedded drug-binding site(s). NBD1 would play an important role in this first restructuring of the membrane-embedded domains. NBD2 would be directly implicated in the subsequent restructuring of the membrane-embedded binding sites by which they recover their initial stability and accessibility to the membrane. It is proposed that this restructuring step would allow the binding and transport of another molecule of substrate.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Benzimidazóis/farmacologia , Sítios de Ligação , Catálise , Membrana Celular/metabolismo , Corantes Fluorescentes , Hidrólise , Cinética , Metabolismo dos Lipídeos , Lipossomos/metabolismo , Camundongos , Camundongos Mutantes , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA