Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 11(38): 3531-3557, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33014289

RESUMO

The epidermal growth factor receptor (EGFR) has been recognized as an important therapeutic target in oncology. It is commonly overexpressed in a variety of solid tumors and is critically involved in cell survival, proliferation, metastasis, and angiogenesis. This multi-dimensional role of EGFR in the progression and aggressiveness of cancer, has evolved from conventional to more targeted therapeutic approaches. With the advent of hybridoma technology and phage display techniques, the first anti-EGFR monoclonal antibodies (mAbs) (Cetuximab and Panitumumab) were developed. Due to major limitations including host immune reactions and poor tumor penetration, these antibodies were modified and used as guiding mechanisms for the specific delivery of readily available chemotherapeutic agents or plants/bacterial toxins, giving rise to antibody-drug conjugates (ADCs) and immunotoxins (ITs), respectively. Continued refinement of ITs led to deimmunization strategies based on depletion of B and T-cell epitopes or substitution of non-human toxins leading to a growing repertoire of human enzymes capable of inducing cell death. Similarly, the modification of classical ADCs has resulted in the first, fully recombinant versions. In this review, we discuss significant advancements in EGFR-targeting immunoconjugates, including ITs and recombinant photoactivable ADCs, which serve as a blueprint for further developments in the evolving domain of cancer immunotherapy.

2.
Biomedicines ; 8(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899183

RESUMO

Melanoma is the least common form of skin cancer and is associated with the highest mortality. Where melanoma is mostly unresponsive to conventional therapies (e.g., chemotherapy), BRAF inhibitor treatment has shown improved therapeutic outcomes. Photodynamic therapy (PDT) relies on a light-activated compound to produce death-inducing amounts of reactive oxygen species (ROS). Their capacity to selectively accumulate in tumor cells has been confirmed in melanoma treatment with some encouraging results. However, this treatment approach has not reached clinical fruition for melanoma due to major limitations associated with the development of resistance and subsequent side effects. These adverse effects might be bypassed by immunotherapy in the form of antibody-drug conjugates (ADCs) relying on the ability of monoclonal antibodies (mAbs) to target specific tumor-associated antigens (TAAs) and to be used as carriers to specifically deliver cytotoxic warheads into corresponding tumor cells. Of late, the continued refinement of ADC therapeutic efficacy has given rise to photoimmunotherapy (PIT) (a light-sensitive compound conjugated to mAbs), which by virtue of requiring light activation only exerts its toxic effect on light-irradiated cells. As such, this review aims to highlight the potential clinical benefits of various armed antibody-based immunotherapies, including PDT, as alternative approaches for the treatment of metastatic melanoma.

3.
J Ethnopharmacol ; 263: 113244, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32800931

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Skin cancer is the most common form of cancer responsible for considerable morbidity and mortality. Tieghemella africana and Ficus vogeliana are used in traditional medicine to treat cancers. AIM OF THE STUDY: Therefore, the aim of this study was to investigate the antioxidant, antiangiogenic and anti-tumor activities of these plant extracts. MATERIALS AND METHODS: To achieve it, phytochemical screening, antioxidant activity and antiangiogenic activity were assessed. Thereafter, the anti-tumor activity was determined using skin tumorigenesis induced by 7,12-dimethylbenz[a]anthracene. RESULTS: The phytochemical result analysis showed that both plant extracts were rich in polyphenols, alkaloids and terpene compounds and possessed good antioxidant activity based on DPPH radical scavenging (IC50 = 9.70 µg/mL and 4.60 µg/mL and AAI values of 5.20 and 10.88) and strong total antioxidant capacity (115.44 VtCE (mg)/g of dry plant extract and 87.37 VtCE (mg)/g of dry plant extract, respectively). Additionally, both plant extracts possessed antiangiogenic activities (IC50 = 53.43 µg/mL and 92.68 µg/mL, respectively), which correlated with significant antitumor activities when using 35 mg/kg (65.02% and 77.54%) and 70 mg/kg of extracts (81.07% and 88.18%). CONCLUSIONS: In summary, this study illustrates the promising usage of Tieghemella africana and Ficus vogeliana plant extracts in treating skin cancer. However, further characterization of the extracts must be performed to isolate the most active anticancer compound.


Assuntos
9,10-Dimetil-1,2-benzantraceno/toxicidade , Ficus , Extratos Vegetais/uso terapêutico , Sapotaceae , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/tratamento farmacológico , Animais , Carcinógenos/toxicidade , Embrião de Galinha , Masculino , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar , Neoplasias Cutâneas/patologia , Resultado do Tratamento , Água
5.
J Bone Miner Res ; 30(1): 55-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25043591

RESUMO

Neurofibromatosis type I (NF1) is an autosomal dominant disease with an incidence of 1/3000, caused by mutations in the NF1 gene, which encodes the RAS/GTPase-activating protein neurofibromin. Non-bone union after fracture (pseudarthrosis) in children with NF1 remains a challenging orthopedic condition to treat. Recent progress in understanding the biology of neurofibromin suggested that NF1 pseudarthrosis stems primarily from defects in the bone mesenchymal lineage and hypersensitivity of hematopoietic cells to TGFß. However, clinically relevant pharmacological approaches to augment bone union in these patients remain limited. In this study, we report the generation of a novel conditional mutant mouse line used to model NF1 pseudoarthrosis, in which Nf1 can be ablated in an inducible fashion in osteoprogenitors of postnatal mice, thus circumventing the dwarfism associated with previous mouse models where Nf1 is ablated in embryonic mesenchymal cell lineages. An ex vivo-based cell culture approach based on the use of Nf1(flox/flox) bone marrow stromal cells showed that loss of Nf1 impairs osteoprogenitor cell differentiation in a cell-autonomous manner, independent of developmental growth plate-derived or paracrine/hormonal influences. In addition, in vitro gene expression and differentiation assays indicated that chronic ERK activation in Nf1-deficient osteoprogenitors blunts the pro-osteogenic property of BMP2, based on the observation that only combination treatment with BMP2 and MEK inhibition promoted the differentiation of Nf1-deficient osteoprogenitors. The in vivo preclinical relevance of these findings was confirmed by the improved bone healing and callus strength observed in Nf1osx (-/-) mice receiving Trametinib (a MEK inhibitor) and BMP2 released locally at the fracture site via a novel nanoparticle and polyglycidol-based delivery method. Collectively, these results provide novel evidence for a cell-autonomous role of neurofibromin in osteoprogenitor cells and insights about a novel targeted approach for the treatment of NF1 pseudoarthrosis.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Regeneração Óssea/efeitos dos fármacos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Neurofibromatose 1 , Neurofibromina 1/deficiência , Inibidores de Proteínas Quinases/farmacologia , Pseudoartrose , Piridonas/farmacologia , Pirimidinonas/farmacologia , Animais , Regeneração Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Nanopartículas , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Pseudoartrose/tratamento farmacológico , Pseudoartrose/genética , Pseudoartrose/metabolismo , Pseudoartrose/patologia
6.
J Bone Miner Res ; 30(6): 1103-11, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25491117

RESUMO

The inner ear vestibular system has numerous projections on central brain centers that regulate sympathetic outflow, and skeletal sympathetic projections affect bone remodeling by inhibiting bone formation by osteoblasts and promoting bone resorption by osteoclasts. In this study, we show that bilateral vestibular lesions in mice cause a low bone mass phenotype associated with decreased bone formation and increased bone resorption. This reduction in bone mass is most pronounced in lower limbs, is not associated with reduced locomotor activity or chronic inflammation, and could be prevented by the administration of the ß-blocker propranolol and by genetic deletion of the ß2-adrenergic receptor, globally or specifically in osteoblasts. These results provide novel experimental evidence supporting a functional autonomic link between central proprioceptive vestibular structures and the skeleton. Because vestibular dysfunction often affects the elderly, these results also suggest that age-related bone loss might have a vestibular component and that patients with inner ear pathologies might be at risk for fracture. Lastly, these data might have relevance to the bone loss observed in microgravity, as vestibular function is altered in this condition as well. © 2015 American Society for Bone and Mineral Research.


Assuntos
Remodelação Óssea , Osteoblastos/metabolismo , Sistema Nervoso Simpático/metabolismo , Vestíbulo do Labirinto/metabolismo , Animais , Feminino , Camundongos , Camundongos Knockout , Osteoblastos/patologia , Osteoporose/genética , Osteoporose/metabolismo , Osteoporose/patologia , Propranolol/efeitos adversos , Propranolol/farmacologia , Sistema Nervoso Simpático/patologia , Doenças Vestibulares/genética , Doenças Vestibulares/metabolismo , Doenças Vestibulares/patologia , Vestíbulo do Labirinto/patologia
7.
Nat Med ; 20(8): 904-10, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997609

RESUMO

Individuals with neurofibromatosis type-1 (NF1) can manifest focal skeletal dysplasias that remain extremely difficult to treat. NF1 is caused by mutations in the NF1 gene, which encodes the RAS GTPase-activating protein neurofibromin. We report here that ablation of Nf1 in bone-forming cells leads to supraphysiologic accumulation of pyrophosphate (PPi), a strong inhibitor of hydroxyapatite formation, and that a chronic extracellular signal-regulated kinase (ERK)-dependent increase in expression of genes promoting PPi synthesis and extracellular transport, namely Enpp1 and Ank, causes this phenotype. Nf1 ablation also prevents bone morphogenic protein-2-induced osteoprogenitor differentiation and, consequently, expression of alkaline phosphatase and PPi breakdown, further contributing to PPi accumulation. The short stature and impaired bone mineralization and strength in mice lacking Nf1 in osteochondroprogenitors or osteoblasts can be corrected by asfotase-α enzyme therapy aimed at reducing PPi concentration. These results establish neurofibromin as an essential regulator of bone mineralization. They also suggest that altered PPi homeostasis contributes to the skeletal dysplasias associated with NF1 and that some of the NF1 skeletal conditions could be prevented pharmacologically.


Assuntos
Fosfatase Alcalina/uso terapêutico , Desenvolvimento Ósseo/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Imunoglobulina G/uso terapêutico , Neurofibromatose 1/tratamento farmacológico , Neurofibromina 1/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Adolescente , Fosfatase Alcalina/biossíntese , Animais , Doenças do Desenvolvimento Ósseo/genética , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Colágeno Tipo I/biossíntese , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo II/genética , Difosfatos/metabolismo , Modelos Animais de Doenças , Durapatita/metabolismo , Humanos , Lactente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoblastos/enzimologia , Osteogênese/genética , Proteínas de Transporte de Fosfato/biossíntese , Proteínas de Transporte de Fosfato/genética , Diester Fosfórico Hidrolases/biossíntese , Diester Fosfórico Hidrolases/genética , Pirofosfatases/biossíntese , Pirofosfatases/genética , Fator de Transcrição Sp7 , Fatores de Transcrição/genética
8.
J Bone Miner Res ; 28(10): 2136-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23553797

RESUMO

Bone remodeling allows the conservation of normal bone mass despite constant changes in internal and external environments. The adaptation of the skeleton to these various stimuli leads credence to the notion that bone remodeling is a true homeostatic function, and as such is under the control of specific centers in the central nervous system (CNS). Hypothalamic and brainstem centers, as well as the sympathetic nervous system (SNS), have been identified as regulators of bone remodeling. However, the nature of the afferent CNS stimuli that may modulate CNS centers involved in the control of bone remodeling, with the exception of leptin, remains unclear. Based on the partial efficacy of exercise and mechanical stimulation regimens to prevent microgravity-induced bone loss and the known alterations in vestibular functions associated with space flights, we hypothesized that inner ear vestibular signals may contribute to the regulation of bone remodeling. Using an established model of bilateral vestibular lesions and microtomographic and histomorphometric bone analyses, we show here that induction of bilateral vestibular lesion in rats generates significant bone loss, which is restricted to weight-bearing bones and associated with a significant reduction in bone formation, as observed in rats under microgravity conditions. Importantly, this bone loss was not associated with reduced locomotor activity or metabolic abnormalities, was accompanied with molecular signs of increased sympathetic outflow, and could be prevented by the ß-blocker propranolol. Collectively, these data suggest that the homeostatic process of bone remodeling has a vestibulosympathetic regulatory component and that vestibular system pathologies might be accompanied by bone fragility.


Assuntos
Remodelação Óssea , Transdução de Sinais , Vestíbulo do Labirinto/fisiopatologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Remodelação Óssea/efeitos dos fármacos , Densitometria , Feminino , Homeostase/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Fenótipo , Propranolol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vestíbulo do Labirinto/efeitos dos fármacos , Vestíbulo do Labirinto/metabolismo , Vestíbulo do Labirinto/patologia , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA