Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurogenetics ; 19(3): 189-204, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29982879

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that leads to the eventual death of motor neurons. Described cases of familial ALS have emphasized the significance of protein misfolding and aggregation of two functionally related proteins, FUS (fused in sarcoma) and TDP-43, implicated in RNA metabolism. Herein, we performed a comprehensive analysis of the in vivo model of FUS-mediated proteinopathy (ΔFUS(1-359) mice). First, we used the Noldus CatWalk system and confocal microscopy to determine the time of onset of the first clinical symptoms and the appearance of FUS-positive inclusions in the cytoplasm of neuronal cells. Second, we applied RNA-seq to evaluate changes in the gene expression profile encompassing the pre-symptomatic and the symptomatic stages of disease progression in motor neurons and the surrounding microglia of the spinal cord. The resulting data show that FUS-mediated proteinopathy is virtually asymptomatic in terms of both the clinical symptoms and the molecular aspects of neurodegeneration until it reaches the terminal stage of disease progression (120 days from birth). After this time, the pathological process develops very rapidly, resulting in the formation of massive FUS-positive inclusions accompanied by a transcriptional "burst" in the spinal cord cells. Specifically, it manifests in activation of a pro-inflammatory phenotype of microglial cells and malfunction of acetylcholine synapse transmission in motor neurons. Overall, we assume that the highly reproducible course of the pathological process, as well as the described accompanying features, makes ΔFUS(1-359) mice a convenient model for testing potential therapeutics against proteinopathy-induced decay of motor neurons.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Proteína FUS de Ligação a RNA/genética , Animais , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Camundongos , Neurônios Motores/fisiologia , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Transdução de Sinais/genética , Medula Espinal/metabolismo , Medula Espinal/patologia
2.
Sci Rep ; 5: 13164, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26281952

RESUMO

Alzheimer disease is a multifactorial pathology and the development of new multitarget neuroprotective drugs is promising and attractive. We synthesized a group of original compounds, which combine in one molecule γ-carboline fragment of dimebon and phenothiazine core of methylene blue (MB) linked by 1-oxo- and 2-hydroxypropylene spacers. Inhibitory activity of the conjugates toward acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and structurally close to them carboxylesterase (CaE), as well their binding to NMDA-receptors were evaluated in vitro and in silico. These newly synthesized compounds showed significantly higher inhibitory activity toward BChE with IC50 values in submicromolar and micromolar range and exhibited selective inhibitory action against BChE over AChE and CaE. Kinetic studies for the 9 most active compounds indicated that majority of them were mixed-type BChE inhibitors. The main specific protein-ligand interaction is π-π stacking of phenothiazine ring with indole group of Trp82. These compounds emerge as promising safe multitarget ligands for the further development of a therapeutic approach against aging-related neurodegenerative disorders such as Alzheimer and/or other pathological conditions.


Assuntos
Butirilcolinesterase/química , Carbolinas/química , Fenotiazinas/química , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Sítios de Ligação , Butirilcolinesterase/metabolismo , Carbolinas/administração & dosagem , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Desenho de Fármacos , Ativação Enzimática , Humanos , Modelos Químicos , Simulação de Acoplamento Molecular , Fenotiazinas/administração & dosagem , Ligação Proteica , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA