RESUMO
Growth hormone-releasing hormone (GHRH) is secreted by the hypothalamus and acts on the pituitary gland to stimulate the release of growth hormone (GH). GHRH can also be produced by human cancers, in which it functions as an autocrine/paracrine growth factor. We have previously shown that synthetic antagonistic analogues of GHRH are able to successfully suppress the growth of 60 different human cancer cell lines representing over 20 cancers. Nevertheless, the expression of GHRH and its receptors in leukaemias has never been examined. Our study demonstrates the presence of GHRH receptor (GHRH-R) on 3 of 4 human acute myeloid leukaemia (AML) cell lines-K-562, THP-1, and KG-1a-and significant inhibition of proliferation of these three cell lines in vitro following incubation with the GHRH antagonist MIA-602. We further show that this inhibition of proliferation is associated with the upregulation of pro-apoptotic genes and inhibition of Akt signalling in leukaemic cells. Treatment with MIA-602 of mice bearing xenografts of these human AML cell lines drastically reduced tumour growth. The expression of GHRH-R was further confirmed in 9 of 9 samples from patients with AML. These findings offer a new therapeutic approach to this malignancy and suggest a possible role of GHRH-R signalling in the pathology of AML.
Assuntos
Apoptose/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Hormônios Reguladores de Hormônio Hipofisário/antagonistas & inibidores , Sermorelina/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Animais , Feminino , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sermorelina/farmacologia , Células THP-1 , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Decreased or impaired proliferation capability of dermal fibroblasts interferes with successful wound healing. Several growth factors tested failed to fully restore the growth of fibroblasts, possibly due to their rapid degradation by proteases. It is therefore critical to find new agents which have stimulatory effects on fibroblasts while being highly resistant to degradation. In such a scenario, the activities of two agonistic analogs of growth hormone releasing hormone (GHRH), MR-409 and MR-502, were evaluated for their impact on proliferation and survival of primary human dermal fibroblasts. In vitro, both analogs significantly stimulated cell growth by more than 50%. Under serum-depletion induced stress, fibroblasts treated with MR-409 or MR-502 demonstrated better survival rates than control. These effects can be inhibited by either PD98059 or wortmannin. Signaling through MEK/ERK1/2 and PI3K/AKT in an IGF-1 receptor-independent manner is required. In vivo, MR-409 promoted wound closure. Animals treated topically with MR-409 healed earlier than controls in a dose-dependent manner. Histologic examination revealed better wound contraction and less fibrosis in treated groups. In conclusion, MR-409 is a potent mitogenic and anti-apoptotic factor for primary human dermal fibroblasts. Its beneficial effects on wound healing make it a promising agent for future development.
Assuntos
Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sermorelina/análogos & derivados , Cicatrização/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Derme/citologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fibroblastos/citologia , Fibroblastos/metabolismo , Flavonoides/farmacologia , Hormônio Liberador de Hormônio do Crescimento/agonistas , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sermorelina/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Tuberculosis is one of the leading causes of mortality produced by an infectious agent. Different strategies including bioinformatics are currently being tested to identify and improve vaccines against tuberculosis. Comparative genome analysis between Streptomyces coelicolor and Mycobacterium tuberculosis suggest that both descend from a common Actinomycete ancestor. In this work, we suggest the use of Streptomyces as a live vector and explore the capacity of Streptomyces immunization to induce a protective response against mycobacterial infection. First, we compared the theoretical proteomes of S. coelicolor A3(2) with those of M. tuberculosis H37Rv and Mycobacterium bovis AF2122/97. This study showed a high similarity at the level of individual genes sequences with both bacteria sharing several membrane proteins. Then, we administered Streptomyces intraperitoneally to mice and determined its distribution by histopathology and culture; we did not find systemic dissemination. After administration of Streptomyces through different routes, we identified the most immunogenic, inducing strong humoral response, as denoted by the high serum antibody titers against this organism with cross reactivity to mycobacterial antigens. Finally, we evaluated the level of protection elicited by the inoculation of Streptomyces in Balb/c mice challenged with BCG. In these animals, lung bacillary loads were significantly lower than the control non-sensitized group.. These observations, along with Streptomyces' potential for expressing foreign proteins, suggest that Streptomyces could be an advantageous vector in the design of new tuberculosis vaccines.