Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 270: 115888, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150752

RESUMO

Glyphosate, a globally prevalent herbicide known for its selective inhibition of the shikimate pathway in plants, is now implicated in physiological effects on humans and animals, probably due to its impacts in their gut microbiomes which possess the shikimate pathway. In this study, we investigate the effects of environmentally relevant concentrations of glyphosate on the gut microbiota, neurotransmitter levels, and anxiety in zebrafish. Our findings demonstrate that glyphosate exposure leads to dysbiosis in the zebrafish gut, alterations in central and peripheral serotonin levels, increased dopamine levels in the brain, and notable changes in anxiety and social behavior. While the dysbiosis can be attributed to glyphosate's antimicrobial properties, the observed effects on neurotransmitter levels leading to the reported induction of oxidative stress in the brain indicate a novel and significant mode of action for glyphosate, namely the impairment of the microbiome-gut-axis. While further investigations are necessary to determine the relevance of this mechanism in humans, our findings shed light on the potential explanation for the contradictory reports on the safety of glyphosate for consumers.


Assuntos
Glifosato , Herbicidas , Humanos , Animais , Peixe-Zebra/metabolismo , Glicina/toxicidade , Disbiose/induzido quimicamente , Ácido Chiquímico/metabolismo , Herbicidas/toxicidade , Neurotransmissores
2.
Environ Sci Pollut Res Int ; 30(57): 119988-119999, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37934408

RESUMO

Although microbial degradation is a key sink of polycyclic aromatic hydrocarbons (PAH) in surface seawaters, there is a dearth of field-based evidences of regional divergences in biodegradation and the effects of PAHs on site-specific microbial communities. We compared the magnitude of PAH degradation and its impacts in short-term incubations of coastal Mediterranean and the Maritime Antarctica microbiomes with environmentally relevant concentrations of PAHs. Mediterranean bacteria readily degraded the less hydrophobic PAHs, with rates averaging 4.72 ± 0.5 ng L h-1. Metatranscriptomic responses showed significant enrichments of genes associated to horizontal gene transfer, stress response, and PAH degradation, mainly harbored by Alphaproteobacteria. Community composition changed and increased relative abundances of Bacteroidota and Flavobacteriales. In Antarctic waters, there was no degradation of PAH, and minimal metatranscriptome responses were observed. These results provide evidence for factors such as geographic region, community composition, and pre-exposure history to predict PAH biodegradation in seawater.


Assuntos
Alphaproteobacteria , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , Regiões Antárticas , Água do Mar , Alphaproteobacteria/metabolismo , Biodegradação Ambiental
3.
Environ Pollut ; 338: 122608, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742857

RESUMO

The sources, biogeochemical controls and sinks of perfluoroalkyl substances, such as perfluoroalkyl acids (PFAAs), in polar coastal regions are largely unknown. These were evaluated by measuring a large multi-compartment dataset of PFAAs concentrations at coastal Livingston and Deception Islands (maritime Antarctica) during three austral summers. PFAAs were abundant in atmospheric-derived samples (aerosols, rain, snow), consistent with the importance of atmospheric deposition as an input of PFAAs to Antarctica. Such PFAAs deposition was unequivocally demonstrated by the occurrence of PFAAs in small Antarctic lakes. Several lines of evidence supported the relevant amplification of PFAAs concentrations in surface waters driven by snow scavenging of sea-spray aerosol-bound PFAAs followed by snow-melting. For example, vertical profiles showed higher PFAAs concentrations at lower-salinity surface seawaters, and PFAAs concentrations in snow were significantly higher than in seawater. The higher levels of PFAAs at Deception Island than at Livingston Island are consistent with the semi-enclosed nature of the bay. Concentrations of PFOS decreased from 2014 to 2018, consistent with observations in other oceans. The sink of PFAAs due to the biological pump, transfer to the food web, and losses due to sea-spray aerosols alone are unlikely to have driven the decrease in PFOS concentrations. An exploratory assessment of the potential sinks of PFAAs suggests that microbial degradation of perfluoroalkyl sulfonates should be a research priority for the evaluation of PFAAs persistence in the coming decade.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Regiões Antárticas , Oceanos e Mares , Água do Mar , Aerossóis , Fluorocarbonos/análise , Monitoramento Ambiental , Ácidos Alcanossulfônicos/análise , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 334: 122188, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442322

RESUMO

Wastewater Treatment Plant (WWTP) effluents are important sources of antibiotics, antibiotic resistance genes (ARGs) and resistant bacteria that threaten aquatic biota and human heath. Antibiotic effects on host-associated microbiomes, spread of ARGs and the consequences for host health are still poorly described. This study investigated changes of the Daphnia magna associated microbiome exposed to the recalcitrant antibiotic doxycycline under artificial reconstituted lab water media (lab water) and treated wastewater media. D. magna individual juveniles were exposed for 10 days to treated wastewater with and without doxycycline, and similarly in lab water. We analysed 16 S rRNA gene sequences to assess changes in community structure, monitored Daphnia offspring production and quantified ARGs abundances by qPCR from both Daphnia and water (before and after the exposure). Results showed that doxycycline and media (lab water or wastewater) had a significant effect modulating Daphnia-associated microbiome composition and one of the most discriminant taxa was Enterococcus spp. Moreover, in lab water, doxycycline reduced the presence of Limnohabitans sp., which are dominant bacteria of the D. magna-associated microbiome and impaired Daphnia reproduction. Contrarily, treated wastewater increased diversity and richness of Daphnia-associated microbiome and promoted fecundity. In addition, the detected ARG genes in both lab water and treated wastewater medium included the qnrS1, sul1, and blaTEM, and the integron-related intI1 gene. The treated wastewater contained about 10 times more ARGs than lab water alone. Furthermore, there was an increase of sul1 in Daphnia cultured in treated wastewater compared to lab water. In addition, there were signs of a higher biodegradation of doxycycline by microbiomes of treated wastewater in comparison to lab water. Thus, results suggest that Daphnia-associated microbiomes are influenced by their environment, and that bacterial communities present in treated wastewater are better suited to cope with the effects of antibiotics.


Assuntos
Antibacterianos , Microbiota , Humanos , Antibacterianos/farmacologia , Antibacterianos/análise , Doxiciclina/farmacologia , Águas Residuárias , Genes Bacterianos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Reprodução , Água/análise
5.
Environ Sci Technol ; 57(4): 1625-1636, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36655903

RESUMO

The temporal trend of polycyclic aromatic hydrocarbons (PAHs) in coastal waters with highly dynamic sources and sinks is largely unknown, especially for polar regions. Here, we show the concurrent measurements of 73 individual PAHs and environmental data, including the composition of the bacterial community, during three austral summers at coastal Livingston (2015 and 2018) and Deception (2017) islands (Antarctica). The Livingston 2015 campaign was characterized by a larger snow melting input of PAHs and nutrients. The assessment of PAH diagnostic ratios, such as parent to alkyl-PAHs or LMW to HMW PAHs, showed that there was a larger biodegradation during the Livingston 2015 campaign than in the Deception 2017 and Livingston 2018 campaigns. The biogeochemical cycling, including microbial degradation, was thus yearly dependent on snow-derived inputs of matter, including PAHs, consistent with the microbial community significantly different between the different campaigns. The bivariate correlations between bacterial taxa and PAH concentrations showed that a decrease in PAH concentrations was concurrent with the higher abundance of some bacterial taxa, specifically the order Pseudomonadales in the class Gammaproteobacteria, known facultative hydrocarbonoclastic bacteria previously reported in degradation studies of oil spills. The work shows the potential for elucidation of biogeochemical processes by intensive field-derived time series, even in the harsh and highly variable Antarctic environment.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Regiões Antárticas , Neve , Biodegradação Ambiental , Bactérias/metabolismo
6.
Front Microbiol ; 13: 869093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532459

RESUMO

Coastal ecosystems deteriorate globally due to human-induced stress factors, like nutrient loading and pollution. Bacteria are critical to marine ecosystems, e.g., by regulating nutrient cycles, synthesizing vitamins, or degrading pollutants, thereby providing essential ecosystem services ultimately affecting economic activities. Yet, until now bacteria are overlooked both as mediators and indicators of ecosystem health, mainly due to methodological limitations in assessing bacterial ecosystem functions. However, these limitations are largely overcome by the advances in molecular biology and bioinformatics methods for characterizing the genetics that underlie functional traits of key bacterial populations - "key" in providing important ecosystem services, being abundant, or by possessing high metabolic rates. It is therefore timely to analyze and define the functional responses of bacteria to human-induced effects on coastal ecosystem health. We posit that categorizing the responses of key marine bacterial populations to changes in environmental conditions through modern microbial oceanography methods will allow establishing the nascent field of genetic counselling for our coastal waters. This requires systematic field studies of linkages between functional traits of key bacterial populations and their ecosystem functions in coastal seas, complemented with systematic experimental analyses of the responses to different stressors. Research and training in environmental management along with dissemination of results and dialogue with societal actors are equally important to ensure the role of bacteria is understood as fundamentally important for coastal ecosystems. Using the responses of microorganisms as a tool to develop genetic counselling for coastal ecosystems can ultimately allow for integrating bacteria as indicators of environmental change.

7.
Front Microbiol ; 13: 907265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910648

RESUMO

As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans.

9.
Environ Pollut ; 308: 119592, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35688389

RESUMO

Semivolatile organic pollutants have potential for long range atmospheric transport and can thus reach pristine remote lakes by atmospheric deposition. Polycyclic aromatic hydrocarbons (PAHs) are among the most abundant and toxic semivolatile pollutants affecting lakes, however, the main factors controlling their fate are still poorly known. Here we show two contrasting lines of evidence for the importance of microbial degradation on the environmental fate of PAHs in a high altitude deep lake. The first evidence is given by an assessment of the metagenomes from surface and deep waters from Lake Redon (Pyrenees Mountains), which shows the occurrence of the initial ring hydroxylating dioxygenases as well as other PAH degrading genes from the complete metabolic route of PAH degradation. The second line of evidence is by the application of an environmental fate model for PAHs to Lake Redon under two contrasting scenarios considering the inclusion or not of degradation. When degradation is included in the model, PAH concentrations in the sediment are predicted within a factor of two of those measured in Lake Redon. Finally, the extent of the degradation sink is quantified and compared to other cycling PAH fluxes in the lake.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Altitude , Monitoramento Ambiental , Sedimentos Geológicos , Lagos/análise , Metagenoma , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
10.
Environ Sci Technol ; 55(19): 12961-12972, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34553911

RESUMO

Scavenging of gas- and aerosol-phase organic pollutants by rain is an efficient wet deposition mechanism of organic pollutants. However, whereas snow has been identified as a key amplification mechanism of fugacities in cold environments, rain has received less attention in terms of amplification of organic pollutants. In this work, we provide new measurements of concentrations of perfluoroalkyl substances (PFAS), organophosphate esters (OPEs), and polycyclic aromatic hydrocarbons (PAHs) in rain from Antarctica, showing high scavenging ratios. Furthermore, a meta-analysis of previously published concentrations in air and rain was performed, with 46 works covering different climatic regions and a wide range of chemical classes, including PFAS, OPEs, PAHs, polychlorinated biphenyls and organochlorine compounds, polybromodiphenyl ethers, and dioxins. The rain-aerosol (KRP) and rain-gas (KRG) partition constants averaged 105.5 and 104.1, respectively, but showed large variability. The high field-derived values of KRG are consistent with adsorption onto the raindrops as a scavenging mechanism, in addition to gas-water absorption. The amplification of fugacities by rain deposition was up to 3 orders of magnitude for all chemical classes and was comparable to that due to snow. The amplification of concentrations and fugacities by rain underscores its relevance, explaining the occurrence of organic pollutants in environments across different climatic regions.


Assuntos
Poluentes Atmosféricos , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluentes Orgânicos Persistentes , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Chuva
11.
Environ Microbiol ; 23(8): 4532-4546, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34169620

RESUMO

Thousands of man-made synthetic chemicals are released to oceans and compose the anthropogenic dissolved organic carbon (ADOC). Little is known about the effects of this chronic pollution on marine microbiome activities. In this study, we measured the pollution level at three sites in the Northeast Subarctic Pacific Ocean (NESAP) and investigated how mixtures of three model families of ADOC at different environmentally relevant concentrations affected naturally occurring marine bacterioplankton communities' structure and metabolic functioning. The offshore northernmost site (North) had the lowest concentrations of hydrocarbons, as well as organophosphate ester plasticizers, contrasting with the two other continental shelf sites, the southern coastal site (South) being the most contaminated. At North, ADOC stimulated bacterial growth and promoted an increase in the contribution of some Gammaproteobacteria groups (e.g. Alteromonadales) to the 16 rRNA pool. These groups are described as fast responders after oil spills. In contrast, minor changes in South microbiome activities were observed. Gene expression profiles at Central showed the coexistence of ADOC degradation and stress-response strategies to cope with ADOC toxicities. These results show that marine microbial communities at three distinct domains in NESAP are influenced by background concentrations of ADOC, expanding previous assessments for polar and temperate waters.


Assuntos
Poluentes Ambientais , Microbiota , Bactérias/genética , Humanos , Oceano Pacífico , Água do Mar
12.
Environ Sci Technol ; 55(14): 9609-9621, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33606522

RESUMO

Coastal seawaters receive thousands of organic pollutants. However, we have little understanding of the response of microbiomes to this pool of anthropogenic dissolved organic carbon (ADOC). In this study, coastal microbial communities were challenged with ADOC at environmentally relevant concentrations. Experiments were performed at two Mediterranean sites with different impact by pollutants and nutrients: off the Barcelona harbor ("BCN"), and at the Blanes Bay ("BL"). ADOC additions stimulated prokaryotic leucine incorporation rates at both sites, indicating the use of ADOC as growth substrate. The percentage of "membrane-compromised" cells increased with increasing ADOC, indicating concurrent toxic effects of ADOC. Metagenomic analysis of the BCN community challenged with ADOC showed a significant growth of Methylophaga and other gammaproteobacterial taxa belonging to the rare biosphere. Gene expression profiles showed a taxon-dependent response, with significantly enrichments of transcripts from SAR11 and Glaciecola spp. in BCN and BL, respectively. Further, the relative abundance of transposon-related genes (in BCN) and transcripts (in BL) correlated with the number of differentially abundant genes (in BCN) and transcripts (in BLA), suggesting that microbial responses to pollution may be related to pre-exposure to pollutants, with transposons playing a role in adaptation to ADOC. Our results point to a taxon-specific response to low concentrations of ADOC that impact the functionality, structure and plasticity of the communities in coastal seawaters. This work contributes to address the influence of pollutants on microbiomes and their perturbation to ecosystem services and ocean health.


Assuntos
Poluentes Ambientais , Microbiota , Carbono , Metagenômica , Água do Mar
13.
Front Microbiol ; 11: 571983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013806

RESUMO

The composition of bacteria inhabiting the sea-surface microlayer (SML) is poorly characterized globally and yet undescribed for the Southern Ocean, despite their relevance for the biogeochemistry of the surface ocean. We report the abundances and diversity of bacteria inhabiting the SML and the subsurface waters (SSL) determined from a unique sample set from a polar coastal ecosystem (Livingston Island, Antarctica). From early to late austral summer (January-March 2018), we consistently found a higher abundance of bacteria in the SML than in the SSL. The SML was enriched in some Gammaproteobacteria genus such as Pseudoalteromonas, Pseudomonas, and Colwellia, known to degrade a wide range of semivolatile, hydrophobic, and surfactant-like organic pollutants. Hydrocarbons and other synthetic chemicals including surfactants, such as perfluoroalkyl substances (PFAS), reach remote marine environments by atmospheric transport and deposition and by oceanic currents, and are known to accumulate in the SML. Relative abundances of specific SML-enriched bacterial groups were significantly correlated to concentrations of PFASs, taken as a proxy of hydrophobic anthropogenic pollutants present in the SML and its stability. Our observations provide evidence for an important pollutant-bacteria interaction in the marine SML. Given that pollutant emissions have increased during the Anthropocene, our results point to the need to assess chemical pollution as a factor modulating marine microbiomes in the contemporaneous and future oceans.

14.
Environ Pollut ; 267: 115512, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892018

RESUMO

Sea-spray (or sea-salt) aerosol (SSA) formation and their subsequent atmospheric transport and deposition have been suggested to play a prominent role in the occurrence of ionizable perfluoroalkyl substances (PFAS) in the maritime Antarctica and other remote regions. However, field studies on SSA's role as vector of transport of PFAS are lacking. Following a multiphase approach, seawater (SW), the sea-surface microlayer (SML) and SSA were sampled simultaneously at South Bay (Livingston Island, Antarctica). Average PFAS concentrations were 313 pg L-1, 447 pg L-1, and 0.67 pg m-3 in SW, the SML and SSA, respectively. The enrichment factors of PFAS in the SML and SSA ranged between 1.2 and 5, and between 522 and 4690, respectively. This amplification of concentrations in the SML is consistent with the surfactant properties of PFAS, while the large enrichment of PFAS in atmospheric SSA may be facilitated by the large surface area of SSA and the sorption of PFAS to aerosol organic matter. This is the first field work assessing the simultaneous occurrence of PFAS in SW, the SML and SSA. The large measured amplification of concentrations in marine aerosols supports the role of SSA as a relevant vector for long-range atmospheric transport of PFAS.


Assuntos
Fluorocarbonos , Aerossóis , Regiões Antárticas , Fluorocarbonos/análise , Ilhas , Oceanos e Mares , Água do Mar
15.
ISME J ; 14(10): 2646-2648, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32647311

RESUMO

Thousands of synthetic chemicals and hydrocarbons are released to the marine environment composing the anthropogenic dissolved organic carbon (ADOC). Most ADOC is disproportionally hydrophobic, and consequently, its concentrations in the cell membranes are between a thousand and hundred million fold higher than those in the dissolved phase. Marine microorganisms respond to ADOC by multiple strategies ranging from ADOC degradation to detoxifying metabolisms. We argue that the increasing concentrations of ADOC in the oceans deriving from rivers, atmospheric deposition, and plastic leachates can have an effect on the health of the oceans and influence the major biogeochemical cycles, thus influencing the Earth system during the Anthropocene.


Assuntos
Carbono , Microbiota , Oceanos e Mares , Rios
16.
J Hazard Mater ; 400: 123208, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-32593021

RESUMO

The use of treated wastewater for crop irrigation is rapidly increasing to respond to the ever-growing demands for water and food resources. However, this practice may contribute to the spread of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in agricultural settings. To evaluate this potential risk, we analyzed microbiomes and resistomes of soil and Lactuca sativa L. (lettuce) root samples from pots irrigated with tap water spiked with 0, 20, or 100 µg L-1 of a mixture of three antibiotics (Trimethoprim, Ofloxacin, Sulfamethoxazole). The presence of antibiotics induced changes in bacterial populations, particularly in soil, as revealed by 16S rDNA sequence analysis. Parallel shotgun sequencing identified a total of 56 different ARGs conferring resistance against 14 antibiotic families. Antibiotic -treated samples showed increased loads of ARGs implicated in mutidrug resistance or in both direct and indirect acquired resistance. These changes correlated with the prevalence of Xantomonadales species in the root microbiomes. We interpret these data as indicating different strategies of soil and root microbiomes to cope with the presence of antibiotics, and as a warning that their presence may increase the loads of ARBs and ARGs in edible plant parts, therefore constituting a potential risk for human consumers.


Assuntos
Antagonistas de Receptores de Angiotensina , Microbiota , Inibidores da Enzima Conversora de Angiotensina , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Prescrições , Solo , Microbiologia do Solo
17.
Water Res ; 171: 115434, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31927092

RESUMO

Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) acids are ubiquitous in the oceans, including remote regions, and are toxic to fish and mammals. The impact to the lowest trophic levels of the food web, however, remains unknown. We challenged natural bacterial communities inhabiting Antarctic coastal waters (Deception Island) with PFOS and PFOA concentrations ranging from 2 ng/L to 600 ng/L that selected for tolerant taxa. After 48 h, concentrations of PFOS decreased by more than 50% and sulfur metabolism-related transcripts were significantly enriched in the treatments suggesting desulfurization of PFOS. Conversely, no significant differences were found between initial and final PFOA concentrations. Gammaproteobacteria and Roseobacter, two abundant groups of marine bacteria, increased their relative activity after 24 h of incubation, whereas Flavobacteriia became the main contributor in the treatments after 6 days. Community activities (extracellular enzyme activity and absolute number of transcripts) were higher in the treatments than in the controls, while bacterial abundances were lower in the treatments, suggesting a selection of PFOS and PFOA tolerant community in the exposed treatments. Our results show a direct effect of PFOS and PFOA exposure on the composition and functionality of natural Antarctic marine microbial communities. While no evidence of defluorination of PFOS or PFOA was detected, probable desulfurization of PFOS depicts a direct link with the sulfur biogeochemistry of the ocean.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Animais , Regiões Antárticas , Caprilatos , Oceanos e Mares
18.
Environ Sci Technol ; 53(15): 8872-8882, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31298532

RESUMO

Many legacy and emerging persistent organic pollutants (POPs) have been reported in polar regions, and act as sentinels of global pollution. Maritime Antarctica is recipient of abundant snow precipitation. Snow scavenges air pollutants, and after snow melting, it can induce an unquantified and poorly understood amplification of concentrations of POPs. Air, snow, the fugacity in soils and snow, seawater and plankton were sampled concurrently from late spring to late summer at Livingston Island (Antarctica). Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) concentrations in snow and air were close to equilibrium. POPs in soils showed concentrations close to soil-air equilibrium or net volatilization depending on chemical volatility. Seawater-air fugacity ratios were highly correlated with the product of the snow-air partition coefficient and the Henry's law constant (KSA H'), a measure of snow amplification of fugacity. Therefore, coastal seawater mirrored the PCB congener profile and increased concentrations in snowmelt due to snowpack releasing POPs to seawater. The influence of snowpack and glacier inputs was further evidenced by the correlation between net volatilization fluxes of PCBs and seawater salinity. A meta-analysis of KSA, estimated as the ratio of POP concentrations in snow and air from previously reported simultaneous field measurements, showed that snow amplification is relevant for diverse families of POPs, independent of their volatility. We claim that the potential impact of atmospheric pollution on aquatic ecosystems has been under-predicted by only considering air-water partitioning, as snow amplification influences, and may even control, the POP occurrence in cold environments.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Bifenilos Policlorados , Regiões Antárticas , Ecossistema , Monitoramento Ambiental , Ilhas , Neve
19.
Microb Biotechnol ; 12(5): 892-906, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270938

RESUMO

Organic pollutants (OPs) are critically toxic, bioaccumulative and globally widespread. Moreover, several OPs negatively influence aquatic wildlife. Although bacteria are major drivers of the ocean carbon cycle and the turnover of vital elements, there is limited knowledge of OP effects on heterotrophic bacterioplankton. We therefore investigated growth and gene expression responses of the Baltic Sea model bacterium Rheinheimera sp. BAL341 to environmentally relevant concentrations of distinct classes of OPs in 2-h incubation experiments. During exponential growth, exposure to a mix of polycyclic aromatic hydrocarbons, alkanes and organophosphate esters (denoted MIX) resulted in a significant decrease (between 9% and 18%) in bacterial abundance and production compared with controls. In contrast, combined exposure to perfluorooctanesulfonic acids and perfluorooctanoic acids (denoted PFAS) had no significant effect on growth. Nevertheless, MIX and PFAS exposures both induced significant shifts in gene expression profiles compared with controls in exponential growth. This involved several functional metabolism categories (e.g. stress response and fatty acids metabolism), some of which were pollutant-specific (e.g. phosphate acquisition and alkane-1 monooxygenase genes). In stationary phase, only two genes in the MIX treatment were significantly differentially expressed. The substantial direct influence of OPs on metabolism during bacterial growth suggests that widespread OPs could severely alter biogeochemical processes governed by bacterioplankton.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/crescimento & desenvolvimento , Chromatiaceae/efeitos dos fármacos , Chromatiaceae/crescimento & desenvolvimento , Expressão Gênica/efeitos dos fármacos , Compostos Orgânicos/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/genética , Carga Bacteriana , Chromatiaceae/genética , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Água do Mar/microbiologia
20.
Sci Total Environ ; 678: 486-498, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31077927

RESUMO

Organic pollutants are continuously being introduced in seawater with uncharacterized impacts on the engines of the marine biogeochemical cycles, the microorganisms. The effects on marine microbial communities were assessed for perfluoroalkyl substances, organophosphate esters flame retardants and plasticizers, polycyclic aromatic hydrocarbons, and n-alkanes. Dose-response experiments were performed at three stations and at three depths in the NW Mediterranean with contrasted nutrient and pollutant concentrations. In these experiments, the microbial growth rates, the abundances of the main bacterial groups, measured by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH), and extracellular enzymatic activities, were quantified. Increasing concentrations of organic pollutants (OPs) promoted different responses in the communities that were compound, organism and nutrient availability (trophic status). The largest differences between OP treatments and controls in the growth rates of both heterotrophic and phototrophic microbial groups were observed in seawater from the deep chlorophyll maxima. Furthermore, there was a compound specific stimulation of different extracellular enzymatic activities after the exposure to OPs. Our results revealed that marine microbial communities reacted not only to hydrocarbons, known to be used as a carbon source, but also to low concentrations of organic pollutants of emerging concern in a complex manner, reflecting the variability of various environmental variables. Multiple linear regressions suggested that organic pollutants modulated the bacterial growth and extracellular enzymatic activities, but this modulation was of lower magnitude than the observed pronounced response of the microbial community to nutrient availability.


Assuntos
Bactérias/efeitos dos fármacos , Hidrocarbonetos/efeitos adversos , Microbiota/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Mar Mediterrâneo , Compostos Orgânicos/efeitos adversos , Água do Mar/química , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA