Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(3): e9887, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36937058

RESUMO

On Madagascar, the illegal and unsustainable exploitation and illegal international trade of Dalbergia (rosewood) precious woods remain a serious conservation problem. Members of this genus are at high risk of extinction as a consequence of logging, mining, and slash and burn agriculture. Morphological identification of these Malagasy species is difficult in the absence of flowers and fruits, especially in the case of cut trees, sawn wood, and finished product. In this study, we use molecular barcoding to identify the Dalbergia species with the intent to contribute to the control of their illegal trade. Thirty-six Dalbergia samples representing 12 Malagasy species of which 11 have high commercial value, were collected to test the efficacy of a region of the plastid genome (rbcL) and a nuclear-transcribed ITS for barcoding. These widely used markers, as well as DNA barcoding gaps, "best match" and "best close match" approaches, and the neighbor-joining method were employed. All samples were amplified and sequenced using the two markers. Using a single locus, the "best match" and "best close match" approaches revealed that ITS has high discriminatory power within the tested Malagasy species. The combination of rbcL + ITS revealed 100% species discrimination. This study confirms that ITS alone and in combination with chloroplast barcode rbcL allow non-ambiguous identification for the 12 species studied. The results contribute to the development of DNA barcoding as a useful tool to identify Malagasy Dalbergia and suggest that the approach developed should be expanded to all 56 potentially exploited species in reference to international CITES requirements and the sustainable management of valuable resources.

2.
J Mol Evol ; 86(3-4): 216-239, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29556741

RESUMO

Amaranthus species are an emerging and promising nutritious traditional vegetable food source. Morphological plasticity and poorly resolved dendrograms have led to the need for well resolved species phylogenies. We hypothesized that whole chloroplast phylogenomics would result in more reliable differentiation between closely related amaranth species. The aims of the study were therefore: to construct a fully assembled, annotated chloroplast genome sequence of Amaranthus tricolor; to characterize Amaranthus accessions phylogenetically by comparing barcoding genes (matK, rbcL, ITS) with whole chloroplast sequencing; and to use whole chloroplast phylogenomics to resolve deeper phylogenetic relationships. We generated a complete A. tricolor chloroplast sequence of 150,027 bp. The three barcoding genes revealed poor inter- and intra-species resolution with low bootstrap support. Whole chloroplast phylogenomics of 59 Amaranthus accessions increased the number of parsimoniously informative sites from 92 to 481 compared to the barcoding genes, allowing improved separation of amaranth species. Our results support previous findings that two geographically independent domestication events of Amaranthus hybridus likely gave rise to several species within the Hybridus complex, namely Amaranthus dubius, Amaranthus quitensis, Amaranthus caudatus, Amaranthus cruentus and Amaranthus hypochondriacus. Poor resolution of species within the Hybridus complex supports the recent and ongoing domestication within the complex, and highlights the limitation of chloroplast data for resolving recent evolution. The weedy Amaranthus retroflexus and Amaranthus powellii was found to share a common ancestor with the Hybridus complex. Leafy amaranth, Amaranthus tricolor, Amaranthus blitum, Amaranthus viridis and Amaranthus graecizans formed a stable sister lineage to the aforementioned species across the phylogenetic trees. This study demonstrates the power of next-generation sequencing data and reference-based assemblies to resolve phylogenies, and also facilitated the identification of unknown Amaranthus accessions from a local genebank. The informative phylogeny of the Amaranthus genus will aid in selecting accessions for breeding advanced genotypes to satisfy global food demand.


Assuntos
Amaranthus/classificação , Genoma de Cloroplastos , Genoma de Planta , Filogenia , Código de Barras de DNA Taxonômico , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA