Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352480

RESUMO

Microbial genomes produced by single-cell amplification are largely incomplete. Here, we show that primary template amplification (PTA), a novel single-cell amplification technique, generated nearly complete genomes from three bacterial isolate species. Furthermore, taxonomically diverse genomes recovered from aquatic and soil microbiomes using PTA had a median completeness of 81%, whereas genomes from standard amplification approaches were usually <30% complete. PTA-derived genomes also included more associated viruses and biosynthetic gene clusters.

2.
Nat Microbiol ; 9(1): 241-250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172625

RESUMO

Bacteria respond to environmental stimuli through precise regulation of transcription initiation and elongation. Bulk RNA sequencing primarily characterizes mature transcripts, so to identify actively transcribed loci we need to capture RNA polymerase (RNAP) complexed with nascent RNA. However, such capture methods have only previously been applied to culturable, genetically tractable organisms such as E. coli and B. subtilis. Here we apply precision run-on sequencing (PRO-seq) to profile nascent transcription in cultured E. coli and diverse uncultured bacteria. We demonstrate that PRO-seq can characterize the transcription of small, structured, or post-transcriptionally modified RNAs, which are often absent from bulk RNA-seq libraries. Applying PRO-seq to the human microbiome highlights taxon-specific RNAP pause motifs and pause-site distributions across non-coding RNA loci that reflect structure-coincident pausing. We also uncover concurrent transcription and cleavage of CRISPR guide RNAs and transfer RNAs. We demonstrate the utility of PRO-seq for exploring transcriptional dynamics in diverse microbial communities.


Assuntos
Escherichia coli , RNA Guia de Sistemas CRISPR-Cas , Humanos , Escherichia coli/genética , RNA Polimerases Dirigidas por DNA/genética , RNA/genética , Perfilação da Expressão Gênica
3.
Viruses ; 15(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005943

RESUMO

Bacteriophages (phages) are the most numerous entities on Earth, but we have only scratched the surface of describing phage diversity. We isolated seven Bacillus subtilis phages from desert soil in the southwest United States and then sequenced and characterized their genomes. Comparative analyses revealed high nucleotide and amino acid similarity between these seven phages, which constitute a novel subcluster. Interestingly, the tail fiber and lysin genes of these phages seem to come from different origins and carry out slightly different functions. These genes were likely acquired by this subcluster of phages via horizontal gene transfer. In conjunction with host range assays, our data suggest that these phages are adapting to hosts with different cell walls.


Assuntos
Fagos Bacilares , Bacteriófagos , Fagos Bacilares/genética , Genoma Viral , Bacteriófagos/genética , Sequência de Bases , Solo
4.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333098

RESUMO

The frequent exchange of mobile genetic elements (MGEs) between bacteria accelerates the spread of functional traits, including antimicrobial resistance, within the human microbiome. Yet, progress in understanding these intricate processes has been hindered by the lack of tools to map the spatial spread of MGEs in complex microbial communities, and to associate MGEs to their bacterial hosts. To overcome this challenge, we present an imaging approach that pairs single molecule DNA Fluorescence In Situ Hybridization (FISH) with multiplexed ribosomal RNA FISH, thereby enabling the simultaneous visualization of both MGEs and host bacterial taxa. We used this methodology to spatially map bacteriophage and antimicrobial resistance (AMR) plasmids in human oral biofilms, and we studied the heterogeneity in their spatial distributions and demonstrated the ability to identify their host taxa. Our data revealed distinct clusters of both AMR plasmids and prophage, coinciding with densely packed regions of host bacteria in the biofilm. These results suggest the existence of specialized niches that maintain MGEs within the community, possibly acting as local hotspots for horizontal gene transfer. The methods introduced here can help advance the study of MGE ecology and address pressing questions regarding antimicrobial resistance and phage therapy.

5.
Res Sq ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993251

RESUMO

Promoter-proximal pausing of RNA polymerase II (Pol II) is a key regulatory step during transcription. Despite the central role of pausing in gene regulation, we do not understand the evolutionary processes that led to the emergence of Pol II pausing or its transition to a rate-limiting step actively controlled by transcription factors. Here we analyzed transcription in species across the tree of life. We found that unicellular eukaryotes display a slow acceleration of Pol II near transcription start sites. This proto-paused-like state transitioned to a longer, focused pause in derived metazoans which coincided with the evolution of new subunits in the NELF and 7SK complexes. Depletion of NELF reverts the mammalian focal pause to a proto-pause-like state and compromises transcriptional activation for a set of heat shock genes. Collectively, this work details the evolutionary history of Pol II pausing and sheds light on how new transcriptional regulatory mechanisms evolve.

6.
Viruses ; 14(10)2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36298661

RESUMO

SPP1, an extensively studied bacteriophage of the Gram-positive Bacillus subtilis, is a model system for the study of phage-host interactions. Despite progress in the isolation and characterization of Bacillus phages, no previously fully sequenced phages have shared more than passing genetic similarity to SPP1. Here, we describe three virulent phages very similar to SPP1; SPP1 has greater than 80% nucleotide sequence identity and shares more that 85% of its protein coding genes with these phages. This is remarkable, given more than 40 years between the isolation of SPP1 and these phages. All three phages have somewhat larger genomes and more genes than SPP1. We identified a new putative gene in SPP1 based on a conserved sequence found in all phages. Gene conservation connotes purifying selection and is observed in structural genes and genes involved in DNA metabolism, but also in genes of unknown function, suggesting an important role in phage survival independent of the environment. Patterns of divergence point to genes or gene domains likely involved in adaptation to diverse hosts or different environments. Ultimately, comparative genomics of related phages provides insight into the long-term selective pressures that affect phage-bacteria interactions and alter phage genome content.


Assuntos
Fagos Bacilares , Bacteriófagos , Bacteriófagos/genética , Bacillus subtilis/genética , Fagos Bacilares/genética , Genômica , Sequência de Bases , DNA , Genoma Viral
7.
Phage (New Rochelle) ; 3(3): 171-178, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36793550

RESUMO

Background: Despite their importance to microbial dynamics involving Bacillus subtilis, we have a limited understanding of the diversity of phages that can lyse this model organism. Materials and Methods: Phages were isolated from soil samples collected from various sites in the southwest U.S. deserts on a wild B. subtilis strain. Their genomes were assembled, characterized, and bioinformatically compared. Results: Six Siphoviruses with high nucleotide and amino acid similarity to each other (>80%) but very limited similarity to phages currently in GenBank were isolated. These phages have double-stranded DNA genomes (55,312 to 56,127 bp) with 86-91 putative protein coding genes, and a low GC content. Comparative genomics reveal differences in loci encoding proteins that are putatively involved in bacterial adsorption with evidence for genomic mosaicism and a possible role for small genes. Conclusions: A comparative approach provides insights into phage evolution, including the role of indels in protein folding.

8.
Nat Commun ; 11(1): 4379, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873785

RESUMO

The gut microbiome harbors a 'silent reservoir' of antibiotic resistance (AR) genes that is thought to contribute to the emergence of multidrug-resistant pathogens through horizontal gene transfer (HGT). To counteract the spread of AR, it is paramount to know which organisms harbor mobile AR genes and which organisms engage in HGT. Despite methods that characterize the overall abundance of AR genes in the gut, technological limitations of short-read sequencing have precluded linking bacterial taxa to specific mobile genetic elements (MGEs) encoding AR genes. Here, we apply Hi-C, a high-throughput, culture-independent method, to surveil the bacterial carriage of MGEs. We compare two healthy individuals with seven neutropenic patients undergoing hematopoietic stem cell transplantation, who receive multiple courses of antibiotics, and are acutely vulnerable to the threat of multidrug-resistant infections. We find distinct networks of HGT across individuals, though AR and mobile genes are associated with more diverse taxa within the neutropenic patients than the healthy subjects. Our data further suggest that HGT occurs frequently over a several-week period in both cohorts. Whereas most efforts to understand the spread of AR genes have focused on pathogenic species, our findings shed light on the role of the human gut microbiome in this process.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Genes Bacterianos/efeitos dos fármacos , Adulto , Idoso , Antibacterianos/uso terapêutico , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequências Repetitivas Dispersas/efeitos dos fármacos , Pessoa de Meia-Idade
9.
Bacteriophage ; 6(3): e1219441, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27738556

RESUMO

The presence of tRNA genes in bacteriophages has been explained on the basis of codon usage (tRNA genes are retained in the phage genome if they correspond to codons more common in the phage than in its host) or amino acid usage (independent of codon, the amino acid corresponding to the retained tRNA gene is more common in the phage genome than in the bacterial host). The existence of a large database of sequenced mycobacteriophages, isolated on the common host Mycobacterium smegmatis, allows us to test the above hypotheses as well as explore other hypotheses for the presence of tRNA genes. Our analyses suggest that amino acid rather than codon usage better explains the presence of tRNA genes in mycobacteriophages. However, closely related phages that differ in the presence of tRNA genes in their genomes are capable of lysing the common bacterial host and do not differ in codon or amino acid usage. This suggests that the benefits of having tRNA genes may be associated with either growth in the host or the ability to infect more hosts (i.e., host range) rather than simply infecting a particular host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA