Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(8): 1450-1467, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337046

RESUMO

Akkermansia muciniphila, a mucophilic member of the gut microbiota, protects its host against metabolic disorders. Because it is genetically intractable, the mechanisms underlying mucin metabolism, gut colonization and its impact on host physiology are not well understood. Here we developed and applied transposon mutagenesis to identify genes important for intestinal colonization and for the use of mucin. An analysis of transposon mutants indicated that de novo biosynthesis of amino acids was required for A. muciniphila growth on mucin medium and that many glycoside hydrolases are redundant. We observed that mucin degradation products accumulate in internal compartments within bacteria in a process that requires genes encoding pili and a periplasmic protein complex, which we term mucin utilization locus (MUL) genes. We determined that MUL genes were required for intestinal colonization in mice but only when competing with other microbes. In germ-free mice, MUL genes were required for A. muciniphila to repress genes important for cholesterol biosynthesis in the colon. Our genetic system for A. muciniphila provides an important tool with which to uncover molecular links between the metabolism of mucins, regulation of lipid homeostasis and potential probiotic activities.


Assuntos
Intestinos , Mucinas , Verrucomicrobia , Animais , Camundongos , Mucinas/metabolismo , Esteróis/biossíntese , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/metabolismo , Intestinos/microbiologia , Organismos Livres de Patógenos Específicos , Elementos de DNA Transponíveis/genética , Mutagênese , Interações entre Hospedeiro e Microrganismos/genética , Espaço Intracelular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transcrição Gênica
2.
Microbiome ; 10(1): 114, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35902900

RESUMO

BACKGROUND: Short-chain fatty acids (SCFAs) derived from gut bacteria are associated with protective roles in diseases ranging from obesity to colorectal cancers. Intake of microbially accessible dietary fibers (prebiotics) lead to varying effects on SCFA production in human studies, and gut microbial responses to nutritional interventions vary by individual. It is therefore possible that prebiotic therapies will require customizing to individuals. RESULTS: Here, we explored prebiotic personalization by conducting a three-way crossover study of three prebiotic treatments in healthy adults. We found that within individuals, metabolic responses were correlated across the three prebiotics. Individual identity, rather than prebiotic choice, was also the major determinant of SCFA response. Across individuals, prebiotic response was inversely related to basal fecal SCFA concentration, which, in turn, was associated with habitual fiber intake. Experimental measures of gut microbial SCFA production for each participant also negatively correlated with fiber consumption, supporting a model in which individuals' gut microbiota are limited in their overall capacity to produce fecal SCFAs from fiber. CONCLUSIONS: Our findings support developing personalized prebiotic regimens that focus on selecting individuals who stand to benefit, and that such individuals are likely to be deficient in fiber intake. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Adulto , Estudos Cross-Over , Fibras na Dieta/administração & dosagem , Ácidos Graxos Voláteis/análise , Fezes/química , Microbioma Gastrointestinal/fisiologia , Humanos
3.
mSystems ; 5(3)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606031

RESUMO

Culture and screening of gut bacteria enable testing of microbial function and therapeutic potential. However, the diversity of human gut microbial communities (microbiota) impedes comprehensive experimental studies of individual bacterial taxa. Here, we combine advances in droplet microfluidics and high-throughput DNA sequencing to develop a platform for separating and assaying growth of microbiota members in picoliter droplets (MicDrop). MicDrop enabled us to cultivate 2.8 times more bacterial taxa than typical batch culture methods. We then used MicDrop to test whether individuals possess similar abundances of carbohydrate-degrading gut bacteria, using an approach which had previously not been possible due to throughput limitations of traditional bacterial culture techniques. Single MicDrop experiments allowed us to characterize carbohydrate utilization among dozens of gut bacterial taxa from distinct human stool samples. Our aggregate data across nine healthy stool donors revealed that all of the individuals harbored gut bacterial species capable of degrading common dietary polysaccharides. However, the levels of richness and abundance of polysaccharide-degrading species relative to monosaccharide-consuming taxa differed by up to 2.6-fold and 24.7-fold, respectively. Additionally, our unique dataset suggested that gut bacterial taxa may be broadly categorized by whether they can grow on single or multiple polysaccharides, and we found that this lifestyle trait is correlated with how broadly bacterial taxa can be found across individuals. This demonstration shows that it is feasible to measure the function of hundreds of bacterial taxa across multiple fecal samples from different people, which should in turn enable future efforts to design microbiota-directed therapies and yield new insights into microbiota ecology and evolution.IMPORTANCE Bacterial culture and assay are components of basic microbiological research, drug development, and diagnostic screening. However, community diversity can make it challenging to comprehensively perform experiments involving individual microbiota members. Here, we present a new microfluidic culture platform that makes it feasible to measure the growth and function of microbiota constituents in a single set of experiments. As a proof of concept, we demonstrate how the platform can be used to measure how hundreds of gut bacterial taxa drawn from different people metabolize dietary carbohydrates. Going forward, we expect this microfluidic technique to be adaptable to a range of other microbial assay needs.

4.
Elife ; 72018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29916366

RESUMO

How host and microbial factors combine to structure gut microbial communities remains incompletely understood. Redox potential is an important environmental feature affected by both host and microbial actions. We assessed how antibiotics, which can impact host and microbial function, change redox state and how this contributes to post-antibiotic succession. We showed gut redox potential increased within hours of an antibiotic dose in mice. Host and microbial functioning changed under treatment, but shifts in redox potentials could be attributed specifically to bacterial suppression in a host-free ex vivo human gut microbiota model. Redox dynamics were linked to blooms of the bacterial family Enterobacteriaceae. Ecological succession to pre-treatment composition was associated with recovery of gut redox, but also required dispersal from unaffected gut communities. As bacterial competition for electron acceptors can be a key ecological factor structuring gut communities, these results support the potential for manipulating gut microbiota through managing bacterial respiration.


Assuntos
Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Animais , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lipocalina-2/genética , Lipocalina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
5.
Int J Legal Med ; 131(2): 497-500, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27507011

RESUMO

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was performed to map elements in thin formalin-fixed paraffin-embedded tissue sections of two forensic cases with firearm and electrocution injuries, respectively. In both cases, histological examination of the wounded tissue regions revealed the presence of exogenous aggregates that may be interpreted as metallic depositions. The use of imaging LA-ICP-MS allowed us to unambiguously determine the elemental composition of the observed aggregates assisting the pathologist in case assessments. To the best of our knowledge, we demonstrate for the first time the use of imaging LA-ICP-MS as a complementary tool for forensic pathologists and toxicologists in order to map the presence of metals and other elements in thin tissue sections of post-mortem cases.


Assuntos
Espectrometria de Massas/métodos , Pele/química , Oligoelementos/análise , Adulto , Traumatismos por Eletricidade/patologia , Humanos , Lasers de Estado Sólido , Masculino , Pessoa de Meia-Idade , Pele/patologia , Ferimentos por Arma de Fogo/patologia
6.
J Endod ; 42(5): 760-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26994596

RESUMO

INTRODUCTION: The ability to promote osteoblast differentiation is a desirable property of root-end filling materials. Several in vitro studies compare the cytotoxicity and physical properties between mineral trioxide aggregate (MTA) and Endosequence root repair material (ERRM), but not their osteogenic potential. Three-dimensional cultures allow cells to better maintain their physiological morphology and better resemble in vivo cellular response than 2-dimensional cultures. Here we examined the osteogenic potential of MTA and ERRM by using a commercially available 3-dimensional Alvetex scaffold. METHODS: Mandibular osteoblasts were derived from 3-week-old male transgenic reporter mice where mature osteoblasts express green fluorescent protein (GFP) driven by a 2.3-kilobase type I collagen promoter (Col(I)-2.3). Mandibular osteoblasts were grown on Alvetex in direct contact with MTA, ERRM, or no material (negative control) for 14 days. Osteoblast differentiation was evaluated by expression levels of osteogenic genes by using quantitative polymerase chain reaction and by the spatial dynamics of Col(I)-2.3 GFP-positive mature osteoblasts within the Alvetex scaffolds by using 2-photon microscopy. RESULTS: ERRM significantly increased alkaline phosphatase (Alp) and bone sialoprotein (Bsp) expression compared with MTA and negative control groups. Both MTA and ERRM increased osterix (Osx) mRNA significantly compared with the negative control group. The percentage of Col(I)-2.3 GFP-positive cells over total cells within Alvetex was the highest in the ERRM group, followed by MTA and by negative controls. CONCLUSIONS: ERRM promotes osteoblast differentiation better than MTA and controls with no material in a 3-dimensional culture system. Alvetex scaffolds can be used to test endodontic materials.


Assuntos
Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Fosfatos de Cálcio/farmacologia , Osteogênese/efeitos dos fármacos , Óxidos/farmacologia , Materiais Restauradores do Canal Radicular/farmacologia , Silicatos/farmacologia , Fosfatase Alcalina/biossíntese , Fosfatase Alcalina/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Técnicas de Cultura de Células , Diferenciação Celular , Combinação de Medicamentos , Expressão Gênica , Sialoproteína de Ligação à Integrina/biossíntese , Sialoproteína de Ligação à Integrina/efeitos dos fármacos , Masculino , Mandíbula , Teste de Materiais , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição Sp7 , Fatores de Transcrição/metabolismo
7.
J Biomed Mater Res B Appl Biomater ; 104(8): 1580-1590, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26305733

RESUMO

Bone tissue engineering using biomaterial scaffolds and culture-expanded osteoprogenitor cells has been demonstrated in several studies; however, it is not yet a clinical reality. One challenge is the optimal design of scaffolds for cell delivery and the identification of scaffold parameters that can delineate success and failure in vivo. Motivated by a previous experiment in which a batch of lyophilized collagen-hydroxyapatite (HA) scaffolds displayed modest bone formation in vivo, despite having large pores and high porosity, we began to investigate the effect of scaffold permeability on bone formation. Herein, we fabricated scaffolds with a permeability of 2.17 ± 1.63 × 10-9 m4 /(N s) and fourfold higher using a sacrificial gelatin porogen. Scaffolds were seeded with mouse bone marrow stromal cells carrying a fluorescent reporter for osteoblast differentiation and implanted into critical-size calvarial defects in immunodeficient mice. The porogen scaffold group containing a 1:1 ratio of solids to beads was significantly more radiopaque than the scaffold group without the bead porogen 3 weeks after implantation. Quantitative histomorphometry uncovered the same trend between the 1:1 group and scaffolds without porogen found in the radiographic data; however, this was not statistically significant here. Taken together, the X-ray and histology suggest that the 1:1 ratio of porogen to scaffold solids, resulting in a fourfold increase in permeability, may enhance bone formation when compared to scaffolds without porogen. Scaffold permeability can be a useful quality control measure before implantation and this practice should improve the consistency and efficacy of cell-based bone tissue engineering. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1580-1590, 2016.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos , Colágeno , Durapatita , Gelatina , Crânio , Alicerces Teciduais/química , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Colágeno/química , Colágeno/farmacologia , Durapatita/química , Durapatita/farmacologia , Liofilização , Gelatina/química , Gelatina/farmacologia , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteoblastos/patologia , Permeabilidade , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
8.
J Biomed Mater Res B Appl Biomater ; 103(2): 243-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24909953

RESUMO

Osteoprogenitor cells combined with supportive biomaterials represent a promising approach to advance the standard of care for bone grafting procedures. However, this approach faces challenges, including inconsistent bone formation, cell survival in the implant, and appropriate biomaterial degradation. We have developed a collagen-hydroxyapatite (HA) scaffold that supports consistent osteogenesis by donor-derived osteoprogenitors, and is more easily degraded than a pure ceramic scaffold. Herein, the material properties are characterized as well as cell attachment, viability, and progenitor distribution in vitro. Furthermore, we examined the biological performance in vivo in a critical-size mouse calvarial defect. To aid in the evaluation of the in-house collagen-HA scaffold, the in vivo performance was compared with a commercial collagen-HA scaffold (Healos(®) , Depuy). The in-house collagen-HA scaffold supported consistent bone formation by predominantly donor-derived osteoblasts, nearly completely filling a 3.5 mm calvarial defect with bone in all samples (n = 5) after 3 weeks of implantation. In terms of bone formation and donor cell retention at 3 weeks postimplantation, no statistical difference was found between the in-house and commercial scaffold following quantitative histomorphometry. The collagen-HA scaffold presented here is an open and well-defined platform that supports robust bone formation and should facilitate the further development of collagen-hydroxyapatite biomaterials for bone tissue engineering.


Assuntos
Células da Medula Óssea/metabolismo , Substitutos Ósseos , Colágeno , Durapatita , Osteogênese , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Células da Medula Óssea/citologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Colágeno/química , Colágeno/farmacologia , Durapatita/química , Durapatita/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Osteoblastos/citologia , Osteoblastos/metabolismo , Crânio/lesões , Crânio/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
9.
PLoS One ; 9(10): e109568, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329879

RESUMO

Cell-based tissue engineering can be used to replace missing or damaged bone, but the optimal methods for delivering therapeutic cells to a bony defect have not yet been established. Using transgenic reporter cells as a donor source, two different collagen-hydroxyapatite (HA) scaffolds, and a critical-size calvarial defect model, we investigated the effect of a cell-attachment period prior to implantation, with or without an extracellular matrix-based seeding suspension, on cell engraftment and osteogenesis. When quantitatively compared, the in-house scaffold implanted immediately had a higher mean radiopacity than in-house scaffolds incubated overnight. Both scaffold types implanted immediately had significantly higher area fractions of donor cells, while the in-house collagen-HA scaffolds implanted immediately had higher area fractions of the mineralization label compared with groups incubated overnight. When the cell loading was compared in vitro for each delivery method using the in-house scaffold, immediate loading led to higher numbers of delivered cells. Immediate loading may be preferable in order to ensure robust bone formation in vivo. The use of a secondary ECM carrier improved the distribution of donor cells only when a pre-attachment period was applied. These results have improved our understanding of cell delivery to bony defects in the context of in vivo outcomes.


Assuntos
Materiais Biocompatíveis/farmacologia , Colágeno/metabolismo , Durapatita/metabolismo , Matriz Extracelular/metabolismo , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biocompatíveis/metabolismo , Adesão Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Fêmur/citologia , Fêmur/efeitos dos fármacos , Fêmur/fisiologia , Camundongos , Permeabilidade/efeitos dos fármacos , Tíbia/citologia , Tíbia/efeitos dos fármacos , Tíbia/fisiologia
10.
Tissue Eng Part C Methods ; 19(11): 839-49, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23641794

RESUMO

Tissue-engineering therapies have shown early success in the clinic, however, the cell-biomaterial interactions that result in successful outcomes are not yet well understood and are difficult to observe. Here we describe a method for visualizing bone formation within a tissue-engineered construct in vivo, at a single-cell resolution, and in situ in three dimensions using two-photon microscopy. First, two-photon microscopy and histological perspectives were spatially linked using fluorescent reporters for cells in the skeletal lineage. In the process, the tissue microenvironment that precedes a repair-focused study was described. The distribution and organization of type I collagen in the calvarial microenvironment was also described using its second harmonic signal. Second, this platform was used to observe in vivo, for the first time, host cells, donor cells, scaffold, and new bone formation within cell-seeded constructs in a bone defect. We examined constructs during bone repair 4 and 6 weeks after implantation. New bone formed on scaffolds, primarily by donor cells. Host cells formed a new periosteal layer that covered the implant. Scaffold resorption appeared to be site specific, where areas near the top were removed and deeper areas were completely embedded in new mineral. Visualizing the in vivo progression of the cell and scaffold microenvironment will contribute to our understanding of tissue-engineered regeneration and should lead to the development of more streamlined and therapeutically powerful approaches.


Assuntos
Osso e Ossos/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Calcificação Fisiológica , Linhagem da Célula , Microambiente Celular , Colágeno/metabolismo , Genes Reporter , Camundongos , Osteoblastos/citologia , Osteócitos/citologia , Crânio/citologia , Cicatrização
11.
Biomed Microdevices ; 12(2): 253-61, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20012208

RESUMO

We present optimal perfusion conditions for the growth of primary mouse embryonic fibroblasts (mEFs) and mouse embryonic stem cells (mESCs) using a microfluidic perfusion culture system. In an effort to balance nutrient renewal while ensuring the presence of cell secreted factors, we found that the optimal perfusion rate for culturing primary embryonic fibroblasts (mEFs) in our experimental setting is 10 nL/min with an average flow velocity 0.55 microm/s in the microchannel. Primary mEFs may have a greater dependence on cell secreted factors when compared to their immortalized counterpart 3T3 fibroblasts cultured under similar conditions. Both the seeding density and the perfusion rate are critical for the proliferation of primary cells. A week long cultivation of mEFs and mESCs using the microculture system exhibited similar morphology and viability to those grown in a petri dish. Both mEFs and mESCs were analyzed using fluorescence immunoassays to determine their proliferative status and protein expression. Our results demonstrate that a perfusion-based microculture environment is capable of supporting the highly proliferative status of pluripotent embryonic stem cells.


Assuntos
Células/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Crescimento , Células-Tronco Pluripotentes/metabolismo , Animais , Camundongos , Perfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA