Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3982, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729945

RESUMO

The hepatocytes within the liver present an immense capacity to adapt to changes in nutrient availability. Here, by using high resolution volume electron microscopy, we map how hepatic subcellular spatial organization is regulated during nutritional fluctuations and as a function of liver zonation. We identify that fasting leads to remodeling of endoplasmic reticulum (ER) architecture in hepatocytes, characterized by the induction of single rough ER sheet around the mitochondria, which becomes larger and flatter. These alterations are enriched in periportal and mid-lobular hepatocytes but not in pericentral hepatocytes. Gain- and loss-of-function in vivo models demonstrate that the Ribosome receptor binding protein1 (RRBP1) is required to enable fasting-induced ER sheet-mitochondria interactions and to regulate hepatic fatty acid oxidation. Endogenous RRBP1 is enriched around periportal and mid-lobular regions of the liver. In obesity, ER-mitochondria interactions are distinct and fasting fails to induce rough ER sheet-mitochondrion interactions. These findings illustrate the importance of a regulated molecular architecture for hepatocyte metabolic flexibility.


Assuntos
Retículo Endoplasmático , Jejum , Hepatócitos , Fígado , Obesidade , Jejum/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Hepatócitos/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Fígado/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Ácidos Graxos/metabolismo , Humanos , Oxirredução , Proteínas Ribossômicas/metabolismo
2.
Polymers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447425

RESUMO

We evaluate the effectiveness of chelating resins (CR) derived from Merrifield resin (MR) and 1,2-phenylenediamine (PDA), 2,2'-dipyridylamine (DPA), and 2-(aminomethyl)pyridine (AMP) as adsorbent dosimeters for Ag+, Cu2+, Fe3+, and Pb2+ cations from water under competitive and noncompetitive conditions. MR-PDA, MR-DPA, and MR-AMP were obtained in a 95-97% yield and characterized by IR, fluorescence, and SEM. The ability of CRs as adsorbents was determined by batch and flow procedures. MR-PDA showed a batch adsorption capacity order of Fe3+ (29.8 mg/g) > Ag+ (2.7 mg/g) > Pb2+ (2.6 mg/g) at pH 3.4. The flow adsorption showed affinity towards the Ag+ cation at pH 7 (18.4 mg/g) and a reusability of 10 cycles. In MR-DPA, the batch adsorption capacity order was Ag+ (9.1 mg/g) > Pb2+ (8.2 mg/g) > Cu2+ (3.5 mg/g) at pH 5. The flow adsorption showed affinity to the Cu2+ cation at pH 5 (2.2 mg/g) and a reuse of five cycles. In MR-AMP, the batch adsorption capacity was Ag+ (17.1 mg/g) at pH 3.4. The flow adsorption showed affinity to the Fe3+ cation at pH 2 (4.3 mg/g) and a reuse of three cycles. The three synthesized and reusable CRs have potential as adsorbents for Ag+, Cu2+, Fe3+, and Pb2+ cations and showed versatility in metal removal for water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA