Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2820: 89-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941017

RESUMO

Fishery products are one of the main human nutritional sources, and due to the consumption increase, the quality of the derived products may be modified, during catching, technological processing, and storage. Detection and identification of pathogenic and spoilage microorganisms in fishery products is needed because the first may be involved in human diseases, while the second is responsible of significant economic losses. In this sense, liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method and computational analysis of MS data are useful tools for characterizing and identifying different microorganisms and to develop promising strategies for food science investigations. Moreover, in the past decade, metaproteomic methodologies have progressed for the study of microorganisms isolated from their natural samples and independently of the culture restrictions. Metaproteomics enables assessment of proteins and pathways from individual members of the consortium. Metaproteomics can provide a detailed understanding of which organisms occupy specific metabolic niches, how they interact, and how they utilize nutrients, and these insights can be obtained directly from environmental samples.According to that, the sample preparation of the fishery product, the LC-ESI-MS/MS dedicated method, and the MS data analysis were described in the present chapter to obtain the metaproteomic analysis of the respective microbiomes or microbial communities.


Assuntos
Microbiota , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Pesqueiros , Humanos , Produtos Pesqueiros/microbiologia , Produtos Pesqueiros/análise , Animais , Microbiologia de Alimentos
2.
Food Chem ; 450: 139342, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631198

RESUMO

Numerous Pseudomonas species can infect aquatic animals, such as farmed rainbow trout, sea trout, sea bass, and sea bream, by causing disease or stress reactions. In aquaculture facilities, a number of Pseudomonas species have been isolated and identified as the main pathogens. The present study describes the characterization of 18 Pseudomonas strains, isolated from fish products using shotgun proteomics. The bacterial proteomes obtained were further analyzed to identify the main functional pathway proteins involved. In addition, this study revealed the presence of 1015 non-redundant peptides related to virulence factors. An additional 25 species-specific peptides were identified as putative Pseudomonas spp. biomarkers. The results constitute the largest dataset, described thus far for the rapid identification and characterization of Pseudomonas species present in edible fish; furthermore, these data can provide the basis for further research into the development of new therapies against these harmful pathogens.


Assuntos
Produtos Pesqueiros , Proteômica , Pseudomonas , Animais , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Pseudomonas/classificação , Pseudomonas/química , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/análise , Doenças dos Peixes/microbiologia , Proteoma/análise , Proteoma/metabolismo , Fatores de Virulência/metabolismo , Peixes/microbiologia
3.
Food Chem ; 448: 139045, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537549

RESUMO

This article summarizes the characterization, by shotgun proteomics, of 11 bacterial strains identified as responsible for seafood spoilage. A total of 4455 peptide spectrum matches, corresponding to 4299 peptides and 3817 proteins were identified. Analyses of data determined the functional pathways they are involved in. The proteins identified were integrated into a protein-protein network that involves 371 nodes and 3016 edges. Those proteins are implicated in energy pathways, peptidoglycan biosynthesis, spermidine/putrescine metabolism. An additional 773 peptides were characterized as virulence factors, that participates in bacterial pathogenesis; while 14 peptides were defined as biomarkers, as they can be used to differentiate the bacterial species present. This report represents the most extensive proteomic repository available in the field of seafood spoilage bacteria; the data substantially advances the understanding of seafood decay, as well as provides fundamental bases for the recognition of the bacteria existent in seafood that cause spoilage during food processing/storage.


Assuntos
Bactérias , Proteínas de Bactérias , Proteômica , Alimentos Marinhos , Fatores de Virulência , Alimentos Marinhos/microbiologia , Alimentos Marinhos/análise , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Animais , Microbiologia de Alimentos
4.
J Agric Food Chem ; 72(8): 4448-4463, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364257

RESUMO

The presence of biogenic amines (histamine, tyramine, putrescine, and cadaverine) in seafood is a significant concern for food safety. This review describes for the first time a shotgun quantitative proteomics strategy to evaluate and compare foodborne strains of bacteria that produce biogenic amines in seafoods. This approach recognized 35,621 peptide spectrum matches, belonging to 20,792 peptides, and 4621 proteins. It allowed the determination of functional pathways and the classification of the strains into hierarchical clusters. The study identified a protein-protein interaction network involving 1160 nodes/10,318 edges. Proteins were related to energy pathways, spermidine biosynthesis, and putrescine metabolism. Label-free quantitative proteomics allowed the identification of differentially regulated proteins in specific strains such as putrescine aminotransferase, arginine decarboxylase, and l-histidine-binding protein. Additionally, 123 peptides were characterized as virulence factors and 299 peptide biomarkers were selected to identify bacterial species in fish products. This study presents the most extensive proteomic repository and progress in the science of food biogenic bacteria and could be applied in the food industry for the detection of bacterial contamination that produces histamine and other biogenic amines during food processing/storage.


Assuntos
Histamina , Putrescina , Animais , Proteômica , Fatores de Virulência , Aminas Biogênicas/metabolismo , Bactérias/metabolismo , Produtos Pesqueiros , Peptídeos , Alimentos Marinhos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA