Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(23): 15629-15647, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967851

RESUMO

Transcriptional deregulation is a hallmark of many cancers and is exemplified by genomic amplifications of the MYC family of oncogenes, which occur in at least 20% of all solid tumors in adults. Targeting of transcriptional cofactors and the transcriptional cyclin-dependent kinase (CDK9) has emerged as a therapeutic strategy to interdict deregulated transcriptional activity including oncogenic MYC. Here, we report the structural optimization of a small molecule microarray hit, prioritizing maintenance of CDK9 selectivity while improving on-target potency and overall physicochemical and pharmacokinetic (PK) properties. This led to the discovery of the potent, selective, orally bioavailable CDK9 inhibitor 28 (KB-0742). Compound 28 exhibits in vivo antitumor activity in mouse xenograft models and a projected human PK profile anticipated to enable efficacious oral dosing. Notably, 28 is currently being investigated in a phase 1/2 dose escalation and expansion clinical trial in patients with relapsed or refractory solid tumors.


Assuntos
Antineoplásicos , Neoplasias , Adulto , Humanos , Animais , Camundongos , Quinases Ciclina-Dependentes , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Apoptose , Pontos de Checagem do Ciclo Celular , Modelos Animais de Doenças , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Quinase 9 Dependente de Ciclina , Neoplasias/tratamento farmacológico
2.
J Steroid Biochem Mol Biol ; 157: 41-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26554934

RESUMO

TLX (tailless receptor) is a member of the nuclear receptor superfamily and belongs to a class of nuclear receptors for which no endogenous or synthetic ligands have yet been identified. TLX is a promising therapeutic target in neurological disorders and brain tumors. Thus, regulatory ligands for TLX need to be identified to complete the validation of TLX as a useful target and would serve as chemical probes to pursue the study of this receptor in disease models. It has recently been proved that TLX is druggable. However, to identify potent and specific TLX ligands with desirable biological activity, a deeper understanding of where ligands bind, how they alter TLX conformation and of the mechanism by which TLX mediates the transcription of its target genes is needed. While TLX is in the process of escaping from orphanhood, future ligand design needs to progress in parallel with improved understanding of (i) the binding cavity or surfaces to target with small molecules on the TLX ligand binding domain and (ii) the nature of the TLX coregulators in particular cell and disease contexts. Both of these topics are discussed in this review.


Assuntos
Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Sítios de Ligação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/metabolismo , Humanos , Ligantes , Camundongos , Terapia de Alvo Molecular , Receptores Nucleares Órfãos , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Relação Estrutura-Atividade
3.
Nucl Recept Signal ; 12: e003, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25422593

RESUMO

The establishment of effective high throughput screening cascades to identify nuclear receptor (NR) ligands that will trigger defined, therapeutically useful sets of NR activities is of considerable importance. Repositioning of existing approved drugs with known side effect profiles can provide advantages because de novo drug design suffers from high developmental failure rates and undesirable side effects which have dramatically increased costs. Ligands that target estrogen receptor ß (ERß) could be useful in a variety of diseases ranging from cancer to neurological to cardiovascular disorders. In this context, it is important to minimize cross-reactivity with ERα, which has been shown to trigger increased rates of several types of cancer. Because of high sequence similarities between the ligand binding domains of ERα and ERß, preferentially targeting one subtype can prove challenging. Here, we describe a sequential ligand screening approach comprised of complementary in-house assays to identify small molecules that are selective for ERß. Methods include differential scanning fluorimetry, fluorescence polarization and a GAL4 transactivation assay. We used this strategy to screen several commercially-available chemical libraries, identifying thirty ERß binders that were examined for their selectivity for ERß versus ERα, and tested the effects of selected ligands in a prostate cancer cell proliferation assay. We suggest that this approach could be used to rapidly identify candidates for drug repurposing.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Receptor beta de Estrogênio/metabolismo , Linhagem Celular Tumoral , Receptor beta de Estrogênio/genética , Humanos , Ligantes , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato , Ativação Transcricional/efeitos dos fármacos
4.
PLoS One ; 9(6): e99440, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24936658

RESUMO

Nuclear receptors (NRs) are an important group of ligand-dependent transcriptional factors. Presently, no natural or synthetic ligand has been identified for a large group of orphan NRs. Small molecules to target these orphan NRs will provide unique resources for uncovering regulatory systems that impact human health and to modulate these pathways with drugs. The orphan NR tailless (TLX, NR2E1), a transcriptional repressor, is a major player in neurogenesis and Neural Stem Cell (NSC) derived brain tumors. No chemical probes that modulate TLX activity are available, and it is not clear whether TLX is druggable. To assess TLX ligand binding capacity, we created homology models of the TLX ligand binding domain (LBD). Results suggest that TLX belongs to an emerging class of NRs that lack LBD helices α1 and α2 and that it has potential to form a large open ligand binding pocket (LBP). Using a medium throughput screening strategy, we investigated direct binding of 20,000 compounds to purified human TLX protein and verified interactions with a secondary (orthogonal) assay. We then assessed effects of verified binders on TLX activity using luciferase assays. As a result, we report identification of three compounds (ccrp1, ccrp2 and ccrp3) that bind to recombinant TLX protein with affinities in the high nanomolar to low micromolar range and enhance TLX transcriptional repressive activity. We conclude that TLX is druggable and propose that our lead compounds could serve as scaffolds to derive more potent ligands. While our ligands potentiate TLX repressive activity, the question of whether it is possible to develop ligands to de-repress TLX activity remains open.


Assuntos
Didrogesterona/farmacologia , Piperazinas/farmacologia , Pirazóis/farmacologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Ativação Transcricional/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação , Fator II de Transcrição COUP/antagonistas & inibidores , Fator II de Transcrição COUP/fisiologia , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/fisiologia , Genes Reporter , Células HeLa , Humanos , Concentração Inibidora 50 , Ligantes , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Modelos Moleculares , Dados de Sequência Molecular , Receptores Nucleares Órfãos , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/química , Receptor X Retinoide alfa/antagonistas & inibidores , Receptor X Retinoide alfa/fisiologia , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA