Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Invertebr Pathol ; 201: 108021, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37977281

RESUMO

Drivers of marine disease outbreaks are poorly understood in spite of their growing impact. We present here results from a unique case study examining how cockles Cerastoderma edule have responded to the introduction of the novel protistan Marteilia cochillia, which led in 2012 to cockle fishery collapse in Galician rias. Based on intensive survey for eight years (2011-2019) of two affected shellfish beds, inner and outer in the Ría de Arousa, involving monthly evaluation of cockle health status and estimation of mortality, detailed information is provided of the declining impact of marteiliosis over a wild cockle population with evidence suggesting its increasing resistance. Disease dynamics involved an annual "breaking wave" of prevalence and subsequent cockle mass mortality, causing the near extinction of every recruited cohort. A shift in this pattern, from a severe epidemic towards an endemic profile, was observed in the inner shellfish bed since the cohort that was recruited in 2016, suggesting the hypothesis of increasing marteiliosis resistance through natural selection. Risk factors that may contribute to trigger marteiliosis outbreaks were analysed. Host age and sex did not influence susceptibility to marteiliosis. No clear relationships between environmental conditions (temperature, salinity and upwelling index) or cockle density and disease dynamics were found. Spatial differences in disease dynamics could be due to differences in the abundance of infective stages hypothetically linked to spatial differences in the population dynamics of a putative planktonic intermediate host. All these findings have potential implications for the management of diseased populations.


Assuntos
Cardiidae , Parasitos , Animais , Dinâmica Populacional , Alimentos Marinhos , Frutos do Mar
2.
Evol Appl ; 16(11): 1789-1804, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38029062

RESUMO

The common cockle is a valuable bivalve species inhabiting the Atlantic European coasts. The parasite Marteilia cochillia has devastated cockle beds in the southern Galician (NW Spain) rias since 2012. Previous data suggested that cockles from Ría de Arousa acquired some resilience to this parasite through natural selection after consecutive annual marteiliosis outbreaks and candidate markers associated with marteiliosis resilience were identified using population genomics and transcriptomics approaches. Here, a common garden experiment was performed using a naïve stock (from Ría de Muros-Noia) and an affected stock (from Ría de Arousa) to test this hypothesis. Breeders from both stocks were used to produce seed cohorts at hatchery, which were pre-grown in a raft (outdoor nursery stage) and deployed in two shellfish beds affected by marteiliosis in Ría de Arousa (growing-out stage). In both beds, the naïve stock showed high marteiliosis prevalence and was fully depleted in a short period, while the affected stock barely showed evidence of marteiliosis. A set of 45 SNPs putatively associated with marteiliosis resilience were fitted for MassARRAY genotyping to check their role in the differential resilience detected between both stocks. Though no significant differentiation was found between the naïve and the affected stocks with neutral markers, 28 SNPs showed significant divergence between them, suggesting that these SNPs were involved in directional selection during eight generations (to the most) of marteiliosis pressure (long-term selection). Furthermore, signals of selection were also detected in the naïve stock along the marteiliosis outbreak in the growing-out stage (short-term selection) and six SNPs, all shared with the long-term evaluation, showed consistent signals of differentiation according to the infection severity. Some of these SNPs were located within immune genes pertaining to families such as proteasome, ubiquitin, tumor necrosis factor, and glutathione S-transferase. These resilience-associated markers will be useful to recover cockle production in Galicia.

3.
Nat Cancer ; 4(11): 1575-1591, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783803

RESUMO

Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.


Assuntos
Bivalves , Cardiidae , Leucemia , Neoplasias , Animais , Humanos , Cardiidae/genética , Evolução Clonal
4.
Dis Aquat Organ ; 156: 7-13, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823560

RESUMO

A huge, unprecedented mortality of cockle Cerastoderma edule caused by the protist Marteilia cochillia, which had never before been detected in Galicia (NW Spain), brought on a cockle fishery collapse in the Ría de Arousa (Galicia) in 2012. Since then, the disease dynamic pattern in the shellfish bed of Lombos do Ulla (at the inner area of that ria) involved an overwhelming annual wave of infections and subsequent cockle mass mortality that caused the near extinction of every cohort recruited to that bed. However, a pattern shift was detected among wild cohorts recruiting since 2016, with progressive declines of marteiliosis prevalence and increments in cockle survival. This suggested 2 non-exclusive hypotheses: increasing marteiliosis resistance through natural selection, and reduced abundance and/or virulence of the parasite. A field experiment was performed to assess these hypotheses by comparing marteiliosis prevalence and severity, as well as mortality, in cockles that naturally recruited to this bed in 2017 and 2018 with those of naïve cockles collected from a marteiliosis-free area and transplanted into Lombos do Ulla in 2017 and 2018. Marteiliosis prevalence and cumulative cockle mortality quickly reached very high values among the transplanted cockles, demonstrating that the parasite remained present and virulent in the area. Conversely, marteiliosis prevalence and cockle mortality were much lower in the cockles that recruited to Lombos do Ulla, suggesting increased resistance that may have been driven by natural selection. The young age at which cockles start reproduction and the very high mortality caused by marteiliosis may have enhanced natural selection.


Assuntos
Cardiidae , Parasitos , Humanos , Animais , Cardiidae/parasitologia , Espanha/epidemiologia , Pesqueiros
5.
Parasitology ; 150(11): 1015-1021, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37705257

RESUMO

In recent field studies, suspected gymnophallid metacercariae were histologically located in the mantle of mussels from the Norwegian Sea. Mussels from the sites in which that infection was detected also presented abnormally high pearl numbers. It has been previously described that gymnophallid metacercariae could cause pearl formation processes in mussels, as a host reaction to encapsulate these metacercariae. Given the pathological host reaction these parasites elicit, a study was performed to identify gymnophallid metacercariae found in mussels collected from Tromsø at morphological and molecular level and to assess, by the use of molecular tools, the relationship between the parasite and the biological material inside the pearls. As a result, Gymnophallus bursicola metacercariae infecting Norwegian Mytilus edulis were identified according to morphological characters, along with the first 18S rDNA and COI sequences for this trematode species. In addition, parasite DNA from the core of the pearls was extracted and amplified for the first time, confirming the parasitological origin of these pearls. This procedure could allow identifying different parasitic organisms responsible for the generation of pearls in bivalves.


Assuntos
Mytilus edulis , Mytilus , Trematódeos , Animais , Mytilus edulis/parasitologia , Metacercárias/genética , Trematódeos/genética , Trematódeos/anatomia & histologia , DNA Ribossômico/genética
6.
Heredity (Edinb) ; 131(4): 292-305, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37596415

RESUMO

Knowledge of genetic structure at the finest level is essential for the conservation of genetic resources. Despite no visible barriers limiting gene flow, significant genetic structure has been shown in marine species. The common cockle (Cerastoderma edule) is a bivalve of great commercial and ecological value inhabiting the Northeast Atlantic Ocean. Previous population genomics studies demonstrated significant structure both across the Northeast Atlantic, but also within small geographic areas, highlighting the need to investigate fine-scale structuring. Here, we analysed two geographic areas that could represent opposite models of structure for the species: (1) the SW British Isles region, highly fragmented due to biogeographic barriers, and (2) Galicia (NW Spain), a putative homogeneous region. A total of 9250 SNPs genotyped by 2b-RAD on 599 individuals from 22 natural beds were used for the analysis. The entire SNP dataset mostly confirmed previous observations related to genetic diversity and differentiation; however, neutral and divergent SNP outlier datasets enabled disentangling physical barriers from abiotic environmental factors structuring both regions. While Galicia showed a homogeneous structure, the SW British Isles region was split into four reliable genetic regions related to oceanographic features and abiotic factors, such as sea surface salinity and temperature. The information gathered supports specific management policies of cockle resources in SW British and Galician regions also considering their particular socio-economic characteristics; further, these new data will be added to those recently reported in the Northeast Atlantic to define sustainable management actions across the whole distribution range of the species.


Assuntos
Cardiidae , Humanos , Animais , Oceano Atlântico , Espanha , Genótipo , Estruturas Genéticas
7.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1514603

RESUMO

Las bacterias son capaces de desarrollar mecanismos de resistencia a los antimicrobianos, aquellos adquiridos y transmisibles son los más significativos debido al potencial de diseminación. La aparición de Salmonella enterica con resistencia a C3aG, quinolonas y a colistina representa una amenaza progresiva. El objetivo fue determinar la resistencia a los antimicrobianos y la presencia de los mecanismos de resistencia plasmídicos a quinolonas, ß-lactámicos y colistina en aislados de Salmonella provenientes de la vigilancia integrada de enteropatógenos. Fueron estudiadas 501 cepas de Salmonella spp. colectadas entre los años 2020 y 2021, por la red de enteropatógenos del Laboratorio Central de Salud Pública. Se investigó la resistencia a las C3aG, quinolonas y colistina, en aislamientos de humanos, alimentos, animales de consumo y ambiente. Las cepas estudiadas exhibieron resistencia a tetraciclina (32,5%), ácido nalidíxico (29%), ampicilina (13,2%), nitrofurantoína (11,6%), C3aG (7,2%), cotrimoxazol (5,8%), ciprofloxacina (2,2%). El 18% (90/501) presentaron resistencia trasferible por plásmidos, fueron detectados 111 genes (71 cepas con un gen, 17 cepas dos genes y 2 cepas tres genes diferentes). Qnr B: 41,1% (37/90), mcr-1: 38,9% (35/90), CMY: 23,3% (21/90), CTX-M: 16,7% (15/90) y Qnr S: 3,3% (3/90). Heidelberg fue el serovar predominante en muestras de pollo y el mayor portador de genes de resistencia de tipo CMY y mcr-1. La detección de genes en alimentos y animales de consumo, que pueden transmitirse fácilmente al ser humano es motivo de alerta y resalta la importancia de continuar fortaleciendo la vigilancia multisectorial y multidisciplinaria.


Bacteria can develop antimicrobial resistance mechanisms, those acquired and transmissible being the most significant due to the potential for dissemination. The emergence of Salmonella enterica with resistance to third-generation cephalosporins, quinolones, and colistin represents a progressive threat. The objective was to determine antimicrobial resistance and the presence of plasmid resistance mechanisms to quinolones, ß-lactams, and colistin in Salmonella isolates from integrated surveillance of enteropathogens. Five hundred and one strains of Salmonella spp. collected between 2020 and 2021 were studied by the enteropathogen network of the Laboratorio Central de Salud Publica (Central Public Health Laboratory). Research was conducted on the resistance to third-generation cephalosporins, quinolones, and colistin, isolated from humans, foodstuffs, animals for consumption, and the environment. The strains studied exhibited resistance to tetracycline (32.5%), nalidixic acid (29%), ampicillin (13.2%), nitrofurantoin (11.6%), third-generation cephalosporins (7.2%), cotrimoxazole (5.8%), and ciprofloxacin (2.2%). Eighteen percent (90/501) presented plasmid-transferable resistance, 111 genes were detected (71 strains with one gene, 17 strains with two genes, and 2 strains with three different genes). Qnr B: 41.1% (37/90), mcr-1: 38.9% (35/90), CMY: 23.3% (21/90), CTX-M: 16.7% (15/90), and Qnr S: 3.3% (3/90). Heidelberg was the predominant serovar in chicken samples and the largest carrier of CMY and mcr-1 resistance genes. The detection of genes in foodstuffs and animals for consumption, which can be easily transmitted to humans, is a cause for alarm and highlights the importance of continuing to strengthen multisectoral and multidisciplinary surveillance.

8.
Dis Aquat Organ ; 152: 139-145, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519685

RESUMO

Histopathological analysis of soft-shell clams Mya arenaria collected from 2 northwest Russian locations disclosed high prevalence of 2 pathological gill conditions. One involved the occurrence of more or less extended gill areas in which the branchial filaments showed hyperchromatic (basophilic) epithelium with some hypertrophied nuclei, which were considered presumptive signs of viral infection. Another pathological condition involved abnormal proliferation of the branchial epithelium, which lost the main differential features of the normal branchial epithelium (ciliated and simple cell layer structure), becoming non-ciliated, pseudostratified or stratified hyperchromatic epithelium with abundant mitotic figures and frequent apoptotic cells. The most complex cases involved loss of the normal branchial filament architecture, which was replaced with tumour-like growths consisting of branching, convoluted epithelial projections with a connective stroma. Images suggesting migration (invasion) of cells from the abnormally proliferating epithelium to the subjacent connective tissue, which would involve malignancy, were observed in one individual. The occurrence of both pathological conditions in clams from both locations and their co-occurrence in one clam suggest the possibility of a common, possibly viral, aetiology. Furthermore, the high prevalence of the abnormal proliferative disorder in non-polluted areas suggests an infectious aetiology. Additional studies are needed to assess a viral aetiology for the nuclear hypertrophy and/or the abnormal epithelial proliferation as well as the malignancy of the latter condition.


Assuntos
Mya , Animais , Proliferação de Células , Brânquias , Hipertrofia/veterinária , Federação Russa
9.
Adicciones ; 0(0): 1593, 2022 Sep 29.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36200223

RESUMO

During the COVID-19 pandemic, several exceptional measures were put in place in order to avoid virus propagation, such as lockdown and the discontinuation of usual health care assistance services. It was considered that these changes might be associated with an increase in alcohol consumption and a higher risk of relapse for patients under treatment. The aim of this study was to assess changes in alcohol consumption during the lockdown period (between March and May, 2020) in patients following treatment under the Alcohol Use Disorders Programme at the "Hospital 12 de Octubre" in Madrid. A total of 311 patients were assessed through interviews carried out by telephone in accordance with usual clinical practice during that period. 76% of the total number of patients did not experience changes in their alcohol consumption, 9.2% stopped drinking and some experienced severe withdrawal syndrome, while 7.5% relapsed. The risk factors found for worsening the prognosis of the patients were: being female, drinking alcohol alone or at home, binge drinking, concomitant substance misuse and failure to attend therapy groups or self-help groups online during the lockdown. 31.6% of the sample described psychopathological symptoms due to the lockdown, especially those who already had psychiatric comorbidities. For this reason, we can conclude that during the lockdown as a result of the pandemic, most of our alcohol dependent patients did not modify their drinking patterns, but specific factors enabled us to identify a more vulnerable subgroup.


Durante la pandemia producida por la infección por el Covid-19 se produjeron una serie de cambios sociosanitarios excepcionales para evitar su propagación como el confinamiento en el hogar y la supresión de los servicios asistenciales sanitarios habituales. Se consideró que estos cambios podrían implicar un incremento en el consumo de alcohol y un mayor riesgo de recaídas para los pacientes en tratamiento. El objetivo de este estudio fue valorar los cambios en el consumo durante el período de confinamiento (marzo a mayo de 2020) en los pacientes en tratamiento en el programa de alcohol del Hospital Doce de Octubre de Madrid. Fueron valorados 311 pacientes mediante entrevista telefónica dentro de la práctica clínica habitual durante ese período. Un 76 % de los pacientes no presentaron cambios en su situación de consumo, un 9,2% de estos cesaron en el consumo, algunos de ellos con cuadros de abstinencia graves, y un 7,5% recayeron. El sexo femenino, el consumo en solitario o en el hogar, en atracón, o el de otras drogas de forma concomitante y el no estar en terapia grupal o no asistir a grupos de las asociaciones de ayuda mutua por videoconferencia durante el confinamiento fueron factores predictores de mal pronóstico. Un 31,6% presentó alteraciones psicopatológicas debidas al confinamiento, sobre todo, aquellos pacientes con comorbilidad psiquiátrica. Por lo tanto, en situaciones similares a esta, la mayoría de los pacientes en tratamiento no modifican el patrón de consumo, pero, ciertas características identifican un subgrupo de sujetos más vulnerables.

10.
Evol Appl ; 15(9): 1408-1422, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187184

RESUMO

European flat oyster (Ostrea edulis) is an ecologically and economically important marine bivalve, that has been severely affected by the intracellular parasite Bonamia ostreae. In this study, a flat oyster SNP array (~14,000 SNPs) was used to validate previously reported outlier loci for divergent selection associated with B. ostreae exposure in the Northeast Atlantic Area. A total of 134 wild and hatchery individuals from the North Sea, collected in naïve (NV) and long-term affected (LTA) areas, were analysed. Genetic diversity and differentiation were related to the sampling origin (wild vs. hatchery) when using neutral markers, and to bonamiosis status (NV vs. LTA) when using outlier loci for divergent selection. Two genetic clusters appeared intermingled in all sampling locations when using outlier loci, and their frequency was associated with their bonamiosis status. When both clusters were compared, outlier data sets showed high genetic divergence (F ST > 0.25) unlike neutral loci (F ST not ≠ 0). Moreover, the cluster associated with LTA samples showed much higher genetic diversity and significant heterozygote excess with outlier loci, but not with neutral data. Most outliers mapped on chromosome 8 (OE-C8) of the flat oyster genome, supporting a main genomic region underlying resilience to bonamiosis. Furthermore, differentially expressed genes previously reported between NV and LTA strains showed higher mapping density on OE-C8. A range of relevant immune functions were specifically enriched among genes annotated on OE-C8, providing hypotheses for resilience mechanisms to an intracellular parasite. The results suggest that marker-assisted selection could be applied to breed resilient strains of O. edulis to bonamiosis, if lower parasite load and/or higher viability of the LTA genetic cluster following B. ostreae infection is demonstrated.

11.
J Invertebr Pathol ; 192: 107786, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700790

RESUMO

Diseases of bivalve molluscs caused by paramyxid parasites of the genus Marteilia have been linked to mass mortalities and the collapse of commercially important shellfish populations. Until recently, no Marteilia spp. have been detected in common cockle (Cerastoderma edule) populations in the British Isles. Molecular screening of cockles from ten sites on the Welsh coast indicates that a Marteilia parasite is widespread in Welsh C. edule populations, including major fisheries. Phylogenetic analysis of ribosomal DNA (rDNA) gene sequences from this parasite indicates that it is a closely related but different species to Marteilia cochillia, a parasite linked to mass mortality of C. edule fisheries in Spain, and that both are related to Marteilia octospora, for which we provide new rDNA sequence data. Preliminary light and transmission electron microscope (TEM) observations support this conclusion, indicating that the parasite from Wales is located primarily within areas of inflammation in the gills and the connective tissue of the digestive gland, whereas M. cochillia is found mainly within the epithelium of the digestive gland. The impact of infection by the new species, here described as Marteilia cocosarum n. sp., upon Welsh fisheries is currently unknown.


Assuntos
Bivalves , Cardiidae , Parasitos , Animais , Bivalves/parasitologia , Cardiidae/parasitologia , DNA Ribossômico , Pesqueiros , Filogenia , País de Gales
12.
Front Immunol ; 13: 826255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464425

RESUMO

Bivalve molluscs stand out for their ecological success and their key role in the functioning of aquatic ecosystems, while also constituting a very valuable commercial resource. Both ecological success and production of bivalves depend on their effective immune defence function, in which haemocytes play a central role acting as both the undertaker of the cellular immunity and supplier of the humoral immunity. Bivalves have different types of haemocytes, which perform different functions. Hence, identification of cell subpopulations and their functional characterisation in immune responses is essential to fully understand the immune system in bivalves. Nowadays, there is not a unified nomenclature that applies to all bivalves. Characterisation of bivalve haemocyte subpopulations is often combined with 1) other multiple parameter assays to determine differences between cell types in immune-related physiological activities, such as phagocytosis, oxidative stress and apoptosis; and 2) immune response to different stressors such as pathogens, temperature, acidification and pollution. This review summarises the major and most recent findings in classification and functional characterisation of the main haemocyte types of bivalve molluscs.


Assuntos
Bivalves , Ecossistema , Animais , Hemócitos , Fagocitose , Temperatura
13.
Mol Ecol ; 31(3): 736-751, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34192383

RESUMO

Transmissible cancers are parasitic malignant cell lineages that have acquired the ability to infect new hosts from the same species, or sometimes related species. First described in dogs and Tasmanian devils, transmissible cancers were later discovered in some marine bivalves affected by a leukaemia-like disease. In Mytilus mussels, two lineages of bivalve transmissible neoplasia (BTN) have been described to date (MtrBTN1 and MtrBTN2), both of which emerged in a Mytilus trossulus founder individual. Here, we performed extensive screening of genetic chimerism, a hallmark of transmissible cancer, by genotyping 106 single nucleotide polymorphisms of 5,907 European Mytilus mussels. Genetic analysis allowed us to simultaneously obtain the genotype of hosts - Mytilus edulis, M. galloprovincialis or hybrids - and the genotype of tumours of heavily infected individuals. In addition, a subset of 222 individuals were systematically genotyped and analysed by histology to screen for possible nontransmissible cancers. We detected MtrBTN2 at low prevalence in M. edulis, and also in M. galloprovincialis and hybrids although at a much lower prevalence. No MtrBTN1 or new BTN were found, but eight individuals with nontransmissible neoplasia were observed at a single polluted site on the same sampling date. We observed a diversity of MtrBTN2 genotypes that appeared more introgressed or more ancestral than MtrBTN1 and reference healthy M. trossulus individuals. The observed polymorphism is probably due to somatic null alleles caused by structural variations or point mutations in primer-binding sites leading to enhanced detection of the host alleles. Despite low prevalence, two sublineages divergent by 10% fixed somatic null alleles and one nonsynonymous mtCOI (mitochondrial cytochrome oxidase I) substitution are cospreading in the same geographical area, suggesting a complex diversification of MtrBTN2 since its emergence and host species shift.


Assuntos
Mytilus edulis , Mytilus , Neoplasias , Animais , Cães , Europa (Continente) , Mytilus/genética , Mytilus edulis/genética , Prevalência
14.
Fish Shellfish Immunol ; 119: 678-691, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34748932

RESUMO

Recovery of wild populations of the European flat oyster Ostrea edulis is important for ecosystem health and conservation of this species, because native oyster populations have dramatically declined or disappeared in most European waters. Diseases have contributed to oyster decline and are important constrains for oyster recovery. Understanding oyster immune system should contribute to design effective strategies to fight oyster diseases. Haemocytes play a pivotal role in mollusc immune responses protecting from infection. Two main types of haemocytes, granulocytes and hyalinocytes, are distinguished in O. edulis. A study aiming to explore differential functions between both haemocyte types and, thus, to enrich the knowledge of Ostrea edulis immune system, was performed by comparing the proteome of the two haemolymph cell types, using a shotgun approach through liquid chromatography (LC) coupled to mass spectrometry (MS). Cells from oyster haemolymph were differentially separated by Percoll density gradient centrifugation. Shotgun LC-MS/MS performance allowed the identification of 145 proteins in hyalinocytes and 138 in the proteome of granulocytes. After a comparative analysis, 55 proteins with main roles in defence were identified, from which 28 were representative of granulocytes and 27 of hyalinocytes, plus 11 proteins shared by both cell types. Different proteins involved in signal transduction, apoptosis, oxidative response, processes related with the cytoskeleton and structure, recognition and wound healing were identified as representatives of each haemocyte type. Important signalling pathways in the immune response such as MAPK, Ras and NF-κß seemed to be more relevant for granulocytes, while the Wnt signalling pathway, particularly relevant for wound healing, more relevant in hyalinocytes. The differences in proteins involved in recognition and in cytoskeleton and structure suggest differential specialisation in processes of phagocytosis and internalisation of pathogens between haemocyte types. Apoptosis seemed more active in granulocytes. The differences in proteins involved in oxidative response also suggest different redox processes in each cell type.


Assuntos
Ostrea , Proteoma , Animais , Cromatografia Líquida , Ecossistema , Granulócitos , Hemócitos , Espectrometria de Massas em Tandem
15.
Front Microbiol ; 11: 577481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193196

RESUMO

Intracellular microcolonies of bacteria (IMC), in some cases developing large extracellular cysts (bacterial aggregates), infecting primarily gill and digestive gland, have been historically reported in a wide diversity of economically important mollusk species worldwide, sometimes associated with severe lesions and mass mortality events. As an effort to characterize those organisms, traditionally named as Rickettsia or Chlamydia-like organisms, 1950 specimens comprising 22 mollusk species were collected over 10 countries and after histology examination, a selection of 99 samples involving 20 species were subjected to 16S rRNA gene amplicon sequencing. Phylogenetic analysis showed Endozoicomonadaceae sequences in all the mollusk species analyzed. Geographical differences in the distribution of Operational Taxonomic Units (OTUs) and a particular OTU associated with pathology in king scallop (OTU_2) were observed. The presence of Endozoicomonadaceae sequences in the IMC was visually confirmed by in situ hybridization (ISH) in eight selected samples. Sequencing data also indicated other symbiotic bacteria. Subsequent phylogenetic analysis of those OTUs revealed a novel microbial diversity associated with molluskan IMC infection distributed among different taxa, including the phylum Spirochetes, the families Anaplasmataceae and Simkaniaceae, the genera Mycoplasma and Francisella, and sulfur-oxidizing endosymbionts. Sequences like Francisella halioticida/philomiragia and Candidatus Brownia rhizoecola were also obtained, however, in the absence of ISH studies, the association between those organisms and the IMCs were not confirmed. The sequences identified in this study will allow for further molecular characterization of the microbial community associated with IMC infection in marine mollusks and their correlation with severity of the lesions to clarify their role as endosymbionts, commensals or true pathogens.

16.
Dis Aquat Organ ; 140: 203-208, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32815528

RESUMO

This note describes the first detection of the bacteria Francisella halioticida in mussels Mytilus spp. from locations in Normandy and northern Brittany (France) experiencing high mussel mortalities, while it was not detected in the Bay of St Brieuc (northern Brittany), an area which was not affected by abnormal mussel mortality. The distribution of the bacteria in mussels seems to be restricted to inflammatory granulomas as observed in Yesso scallops Mizuhopecten yessoensis from Canada and Japan. F. halioticida has been identified as being involved in mass (>80%) mortality of abalones Haliotis gigantea in Japan and high (up to 40%) mortality of Yesso scallops Mizuhopecten yessoensis in Canada as well as in lesions reducing marketability of Yesso scallops in Japan. The impact of this bacterium on the health of mussels needs to be investigated in future research, especially since the cause of high mussel mortalities that have been occurring in France for the past few years is still undetermined.


Assuntos
Mytilus , Animais , Canadá , França , Francisella , Japão
17.
Fish Shellfish Immunol ; 100: 456-466, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32205190

RESUMO

Haemocytes play a dominant role in shellfish immunity, being considered the main defence effector cells in molluscs. These cells are known to be responsible for many functions, including chemotaxis, cellular recognition, attachment, aggregation, shell repair and nutrient transport and digestion. There are two basic cell types of bivalve haemocytes morphologically distinguishable, hyalinocytes and granulocytes; however, functional differences and specific abilities are poorly understood: granulocytes are believed to be more efficient in killing microorganisms, while hyalinocytes are thought to be more specialised in clotting and wound healing. A proteomic approach was implemented to find qualitative differences in the protein profile between granulocytes and hyalinocytes of the European flat oyster, Ostrea edulis, as a way to evaluate functional differences. Oyster haemolymph cells were differentially separated by Percoll® density gradient centrifugation. Granulocyte and hyalinocyte proteins were separated by 2D-PAGE and their protein profiles were analysed and compared with PD Quest software; the protein spots exclusive for each haemocyte type were excised from gels and analysed by MALDI-TOF/TOF with a combination of mass spectrometry (MS) and MS/MS for sequencing and protein identification. A total of 34 proteins were identified, 20 unique to granulocytes and 14 to hyalinocytes. The results suggested differences between the haemocyte types in signal transduction, apoptosis, oxidation reduction processes, cytoskeleton, phagocytosis and pathogen recognition. These results contribute to identify differential roles of each haemocyte type and to better understand the oyster immunity mechanisms, which should help to fight oyster diseases.


Assuntos
Granulócitos/imunologia , Hemócitos/imunologia , Ostrea/citologia , Ostrea/imunologia , Proteínas/análise , Animais , Eletroforese em Gel Bidimensional , Citometria de Fluxo , Hemócitos/classificação , Hemolinfa/citologia , Hemolinfa/imunologia , Imunidade Inata , Proteínas/imunologia , Proteoma , Espectrometria de Massas em Tandem
18.
J Invertebr Pathol ; 172: 107349, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32119954

RESUMO

Uninucleate and binucleate cells and multinucleate plasmodia of a haplosporidan-like protist associated with heavy haemocytic infiltration were observed in histological sections of cockles, Cerastoderma edule, from the Ría de Noia (Galicia, NW Spain) in the course of a cockle health surveillance programme. Molecular assays provided identification of this protist as Minchinia tapetis, which we thus record from a new host. Prevalence of M. tapetis as high as 93% was recorded but infection intensity was low to moderate, never heavy, and abnormally high cockle mortality was not observed in the ria by shellfishers. A significant positive correlation was found between M. tapetis prevalence and sea water temperature. Sea water temperature increase associated with climate change might contribute to increase the prevalence of this infection in cockles and, as a consequence, this parasite may be considered a threat for cockle production.


Assuntos
Cardiidae/parasitologia , Haplosporídios/fisiologia , Animais , Haplosporídios/isolamento & purificação , Hemócitos/parasitologia , Interações Hospedeiro-Parasita , Estações do Ano , Espanha , Fatores de Tempo
19.
Int J Parasitol ; 50(3): 195-208, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32087247

RESUMO

The Manila clam (Ruditapes philippinarum) is the bivalve species with the highest global production from both fisheries and aquaculture, but its production is seriously threatened by perkinsosis, a disease caused by the protozoan parasite Perkinsus olseni. To understand the molecular mechanisms underlying R. philippinarum-P. olseni interactions, we analysed the gene expression profiles of in vitro challenged clam hemocytes and P. olseni trophozoites, using two oligo-microarray platforms, one previously validated for R. philippinarum hemocytes and a new one developed and validated in this study for P. olseni. Manila clam hemocytes were in vitro challenged with trophozoites, zoospores, and extracellular products from P. olseni in vitro cultures, while P. olseni trophozoites were in vitro challenged with Manila clam plasma along the same time-series (1 h, 8 h, and 24 h). The hemocytes showed a fast activation of the innate immune response, particularly associated with hemocyte recruitment, in the three types of challenges. Nevertheless, different immune-related pathways were activated in response to the different parasite stages, suggesting specific recognition mechanisms. Furthermore, the analyses provided useful complementary data to previous in vivo challenges, and confirmed the potential of some proposed biomarkers. The combined analysis of gene expression in host and parasite identified several processes in both the clam and P. olseni, such as redox and glucose metabolism, protease activity, apoptosis and iron metabolism, whose modulation suggests cross-talk between parasite and host. This information might be critical to determine the outcome of the infection, thus highlighting potential therapeutic targets. Altogether, the results of this study aid understanding the response and interaction between R. philippinarum and P. olseni, and will contribute to developing effective control strategies for this threatening parasitosis.


Assuntos
Alveolados , Bivalves/parasitologia , Alveolados/genética , Alveolados/metabolismo , Animais , Bivalves/genética , Bivalves/metabolismo , Células Sanguíneas/metabolismo , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata , Técnicas In Vitro/métodos , Parasitos/genética , Parasitos/metabolismo , Frutos do Mar/parasitologia , Transcriptoma , Trofozoítos/genética , Trofozoítos/metabolismo
20.
J Invertebr Pathol ; 170: 107308, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857123

RESUMO

In 2014, a high and unusual mass mortality of mussels occurred in several important production areas along the French coasts of the Atlantic and English Channel. In the first quarter of 2016, mass mortalities hit farms on the west coast of the country once again. These heterogeneous mortality events elicited a multi-parametric study conducted during the 2017 mussel season in three sites in northern Brittany (Brest, Lannion and St. Brieuc). The objective was to assess the health status of these mussels, follow mortality and attempt to identify potential causes of the abnormal high mortality of farmed mussels in northern Brittany. Brest was the most affected site with 70% cumulative mortality, then Lannion with 40% and finally St. Brieuc with a normal value of 15%. We highlighted a temporal 'mortality window' that opened throughout the spring season, and concerned the sites affected by mortality of harmful parasites (including pathogenic bacteria), neoplasia, metal contamination, and tissue alterations. Likely, the combination of all these factors leads to a weakening of mussels that can cause death.


Assuntos
Interações Hospedeiro-Patógeno , Mytilus edulis , Poluentes Químicos da Água/toxicidade , Animais , França , Longevidade , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/microbiologia , Mytilus edulis/parasitologia , Mytilus edulis/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA