Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961527

RESUMO

Gliomas are incurable malignancies notable for an immunosuppressive microenvironment with abundant myeloid cells whose immunomodulatory properties remain poorly defined. Here, utilizing scRNA-seq data for 183,062 myeloid cells from 85 human tumors, we discover that nearly all glioma-associated myeloid cells express at least one of four immunomodulatory activity programs: Scavenger Immunosuppressive, C1Q Immunosuppressive, CXCR4 Inflammatory, and IL1B Inflammatory. All four programs are present in IDH1 mutant and wild-type gliomas and are expressed in macrophages, monocytes, and microglia whether of blood or resident myeloid cell origins. Integrating our scRNA-seq data with mitochondrial DNA-based lineage tracing, spatial transcriptomics, and organoid explant systems that model peripheral monocyte infiltration, we show that these programs are driven by microenvironmental cues and therapies rather than myeloid cell type, origin, or mutation status. The C1Q Immunosuppressive program is driven by routinely administered dexamethasone. The Scavenger Immunosuppressive program includes ligands with established roles in T-cell suppression, is induced in hypoxic regions, and is associated with immunotherapy resistance. Both immunosuppressive programs are less prevalent in lower-grade gliomas, which are instead enriched for the CXCR4 Inflammatory program. Our study provides a framework to understand immunomodulatory myeloid cells in glioma, and a foundation to develop more effective immunotherapies.

2.
Arterioscler Thromb Vasc Biol ; 43(12): 2265-2281, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37732484

RESUMO

BACKGROUND: Endothelial cells (ECs) are capable of quickly responding in a coordinated manner to a wide array of stresses to maintain vascular homeostasis. Loss of EC cellular adaptation may be a potential marker for cardiovascular disease and a predictor of poor response to endovascular pharmacological interventions such as drug-eluting stents. Here, we report single-cell transcriptional profiling of ECs exposed to multiple stimulus classes to evaluate EC adaptation. METHODS: Human aortic ECs were costimulated with both pathophysiological flows mimicking shear stress levels found in the human aorta (laminar and turbulent, ranging from 2.5 to 30 dynes/cm2) and clinically relevant antiproliferative drugs, namely paclitaxel and rapamycin. EC state in response to these stimuli was defined using single-cell RNA sequencing. RESULTS: We identified differentially expressed genes and inferred the TF (transcription factor) landscape modulated by flow shear stress using single-cell RNA sequencing. These flow-sensitive markers differentiated previously identified spatially distinct subpopulations of ECs in the murine aorta. Moreover, distinct transcriptional modules defined flow- and drug-responsive EC adaptation singly and in combination. Flow shear stress was the dominant driver of EC state, altering their response to pharmacological therapies. CONCLUSIONS: We showed that flow shear stress modulates the cellular capacity of ECs to respond to paclitaxel and rapamycin administration, suggesting that while responding to different flow patterns, ECs experience an impairment in their transcriptional adaptation to other stimuli.


Assuntos
Aorta , Células Endoteliais , Humanos , Camundongos , Animais , Sirolimo/farmacologia , Paclitaxel/farmacologia , Análise de Sequência de RNA , Estresse Mecânico , Células Cultivadas
3.
Front Immunol ; 13: 809414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359938

RESUMO

The immune system represents a major barrier to cancer progression, driving the evolution of immunoregulatory interactions between malignant cells and T-cells in the tumor environment. Blastic plasmacytoid dendritic cell neoplasm (BPDCN), a rare acute leukemia with plasmacytoid dendritic cell (pDC) differentiation, provides a unique opportunity to study these interactions. pDCs are key producers of interferon alpha (IFNA) that play an important role in T-cell activation at the interface between the innate and adaptive immune system. To assess how uncontrolled proliferation of malignant BPDCN cells affects the tumor environment, we catalog immune cell heterogeneity in the bone marrow (BM) of five healthy controls and five BPDCN patients by analyzing 52,803 single-cell transcriptomes, including 18,779 T-cells. We test computational techniques for robust cell type classification and find that T-cells in BPDCN patients consistently upregulate interferon alpha (IFNA) response and downregulate tumor necrosis factor alpha (TNFA) pathways. Integrating transcriptional data with T-cell receptor sequencing via shared barcodes reveals significant T-cell exhaustion in BPDCN that is positively correlated with T-cell clonotype expansion. By highlighting new mechanisms of T-cell exhaustion and immune evasion in BPDCN, our results demonstrate the value of single-cell multiomics to understand immune cell interactions in the tumor environment.


Assuntos
Transtornos Mieloproliferativos , Neoplasias Cutâneas , Células Dendríticas , Humanos , Interferon-alfa/metabolismo , Transtornos Mieloproliferativos/metabolismo , Neoplasias Cutâneas/patologia , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA