Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genomics ; 114(2): 110283, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143886

RESUMO

The liver plays a principal role in avian migration. Here, we characterised the liver transcriptome of a long-distance migrant, the Northern Wheatear (Oenanthe oenanthe), sampled at different migratory stages, looking for molecular processes linked with adaptations to migration. The analysis of the differentially expressed genes suggested changes in the periods of the circadian rhythm, variation in the proportion of cells in G1/S cell-cycle stages and the putative polyploidization of this cell population. This may explain the dramatic increment in the liver's metabolic capacities towards migration. Additionally, genes involved in anti-oxidative stress, detoxification and innate immune responses, lipid metabolism, inflammation and angiogenesis were regulated. Lipophagy and lipid catabolism were active at all migratory stages and increased towards the fattening and fat periods, explaining the relevance of lipolysis in controlling steatosis and maintaining liver health. Our study clears the way for future functional studies regarding long-distance avian migration.


Assuntos
Migração Animal , Aves Canoras , Migração Animal/fisiologia , Animais , Fígado , Aves Canoras/genética , Transcriptoma
2.
PeerJ ; 6: e5860, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498627

RESUMO

We have sequenced a partial transcriptome of the Northern Wheatear (Oenanthe oenanthe), a species with one of the longest migrations on Earth. The transcriptome was constructed de novo using RNA-Seq sequence data from the pooled mRNA of six different tissues: brain, muscle, intestine, liver, adipose tissue and skin. The samples came from nine captive-bred wheatears collected at three different stages of the endogenous autumn migratory period: (1) lean birds prior the onset of migration, (2) during the fattening stage and (3) individuals at their migratory body mass plateau, when they have almost doubled their lean body mass. The sample structure used to build up the transcriptome of the Northern Wheatears concerning tissue composition and time guarantees the future survey of the regulatory genes involved in the development of the migratory phenotype. Through the pre-migratory period, birds accomplish outstanding physical and behavioural changes that involve all organ systems. Nevertheless, the molecular mechanisms through which birds synchronize and control hyperphagia, fattening, restlessness increase, immunity boosting and tuning the muscles for such endurance flight are still largely unknown. The use of RNA-Seq has emerged as a powerful tool to analyse complex traits on a broad scale, and we believe it can help to characterize the migratory phenotype of wheatears at an unprecedented level. The primary challenge to conduct quantitative transcriptomic studies in non-model species is the availability of a reference transcriptome, which we have constructed and described in this paper. The cDNA was sequenced by pyrosequencing using the Genome Sequencer Roche GS FLX System; with single paired-end reads of about 400 bp. We estimate the total number of genes at 15,640, of which  67% could be annotated using Turkey and Zebra Finch genomes, or protein sequence information from SwissProt and NCBI databases. With our study, we have made a first step towards understanding the migratory phenotype regarding gene expression of a species that has become a model to study birds long-distance migrations.

3.
In Silico Pharmacol ; 1: 13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25505658

RESUMO

PURPOSE: Relapse to alcohol use is considered as one of the central features distinguishing dependence from controlled alcohol consumption. Relapse-like drinking in rodents is a transient episode of heavy drinking that follows a period of abstinence. This behaviour is called the alcohol deprivation effect (ADE). Not all animals develop behavioural changes that resemble relapse-like drinking behaviour. The purpose of our study was to develop a generalized quantitative criterion by which animals could be separated into two groups depending on their behaviour during a relapse-like situation (ADE vs. no-ADE). METHODS: An automated drinkometer system was used for data collection. This system measures fluid consumption by means of high-precision sensors attached to the drinking bottles in the home cage of the rat. We used a four bottle free choice paradigm with water 5, 10, and 20% ethanol solutions. For data analysis we developed a new measure of alcohol intake that quantifies net alcohol intake in relation to net consumption of water. This new measure is called water-penalized net ethanol intake. RESULTS: The new measure is more robust than commonly used measurements, such as alcohol preference and intake. It allows the comparison of alcohol intake between different groups of animals and different setups using an arbitrary number of bottles. Based on this new measure we developed a method to automatically select the threshold for the presence of ADE in individual animals. CONCLUSIONS: Separating animals by their behavior during relapse-like situation could be used as one of the criteria for identification of alcohol addicted and non-addicted rats. A classification into presenting ADE or not is also essential to test the effectiveness of newly developed therapeutic drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA