Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Crohns Colitis ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224550

RESUMO

BACKGROUND: Mesenchymal stromal cells are suggested to play a critical role in the Crohn's Disease (CD) associated fibrosis. MAPKAPK2 (MK2) has emerged as a potential therapeutic target to reduce inflammation in CD. However, cell-specific pattern of pMK2 activation and its role in the CD associated fibrosis are unknown. The objectives of this study were to evaluate cell-specific changes in MK2 activity between predominantly inflammatory CD versus CD with fibrotic complication and define the role of stromal cell-specific MK2 activation in CD-associated fibrosis. METHODS: CD tissue, CD tissue derived mesenchymal stromal cells known as myo-/fibroblasts (CD-MFs), fibroblast specific MK2 conditional KO mice were used. RESULTS: We observed that in the inflamed area of predominantly inflammatory CD, high MK2 activity was equally distributed between mesenchymal and hematopoietic cells. By contrast, in CD with fibrotic complications, high MK2 activity was mostly associated with mesenchymal stromal cells. Using ex vivo CD tissue explants and IL-10KO murine colitis model, we demonstrated that pro-fibrotic responses are significantly reduced by treatment with the MK2 inhibitor PF-3644022. Inhibition of MK2 activity in primary cultures of CD-MFs significantly reduced basal and TGF-ß1-induced profibrotic responses. Using fibroblast-specific MK2 knockout mice in chronic DSS colitis, we demonstrated that fibroblast intrinsic MK2 signaling is among the key processes involved in the chronic inflammation induced profibrotic responses. CONCLUSIONS: Our data suggest that activation of MK2 within fibroblasts contributes to the chronic inflammation induced fibrosis in CD and that targeting MK2 has potential for the development of novel therapeutic approaches for fibrosis in CD.

2.
Front Cell Infect Microbiol ; 13: 1292233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029256

RESUMO

For several decades, questions have been raised about the effects of endocrine disruptors (ED) on environment and health. In humans, EDs interferes with hormones that are responsible for the maintenance of homeostasis, reproduction and development and therefore can cause developmental, metabolic and reproductive disorders. Because of their ubiquity in the environment, EDs can adversely impact microbial communities and pathogens virulence. At a time when bacterial resistance is inevitably emerging, it is necessary to understand the effects of EDs on the behavior of pathogenic bacteria and to identify the resulting mechanisms. Increasing studies have shown that exposure to environmental EDs can affect bacteria physiology. This review aims to highlight current knowledge of the effect of EDs on the virulence of human bacterial pathogens and discuss the future directions to investigate bacteria/EDs interaction. Given the data presented here, extended studies are required to understand the mechanisms by which EDs could modulate bacterial phenotypes in order to understand the health risks.


Assuntos
Disruptores Endócrinos , Humanos , Virulência , Hormônios , Homeostase , Fenótipo
3.
Environ Microbiol Rep ; 15(6): 740-756, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37586891

RESUMO

Anthropogenic activities contribute to the spread of chemicals considered as endocrine disruptors (ED) in freshwater ecosystems. While several studies have reported interactions of EDs with organisms in those ecosystems, very few have assessed the effect of these compounds on pathogenic bacteria. Here we have evaluated the impact of five EDs found in aquatic resources on the virulence of human pathogen P. aeruginosa. ED concentrations in French aquatic resources of bisphenol A (BPA), dibutyl phthalate (DBP), ethylparaben (EP), methylparaben (MP) and triclosan (TCS) at mean molar concentration were 1.13, 3.58, 0.53, 0.69, and 0.81 nM respectively. No impact on bacterial growth was observed at EDs highest tested concentration. Swimming motility of P. aeruginosa decreased to 28.4% when exposed to EP at 100 µM. Swarming motility increased, with MP at 1 nM, 10 and 100 µM (1.5-fold); conversely, a decrease of 78.5%, with DBP at 100 µM was observed. Furthermore, exposure to 1 nM BPA, DBP and EP increased biofilm formation. P. aeruginosa adhesion to lung cells was two-fold higher upon exposure to 1 nM EP. We demonstrate that ED exposure may simultaneously decrease mobility and increase cell adhesion and biofilm formation, which may promote colonisation and establishment of the pathogen.


Assuntos
Disruptores Endócrinos , Pseudomonas aeruginosa , Humanos , Disruptores Endócrinos/toxicidade , Ecossistema , Virulência , Dibutilftalato/farmacologia , Biofilmes
4.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37653467

RESUMO

Legionella pneumophila is an opportunistic pathogen responsible for Legionnaires' disease or Legionellosis. This bacterium is found in the environment interacting with free-living amoebae such as Acanthamoeba castellanii. Until now, proteomic analyses have been done in amoebae infected with L. pneumophila but focused on the Legionella-containing vacuole. In this study, we propose a global proteomic analysis of the A. castellanii proteome following infection with L. pneumophila wild-type (WT) or with an isogenic ΔdotA mutant strain, which is unable to replicate intracellularly. We found that infection with L. pneumophila WT leads to reduced levels of A. castellanii proteins associated with lipid homeostasis/metabolism, GTPase regulation, and kinase. The levels of organelle-associated proteins were also decreased during infection. Legionellapneumophila WT infection leads to increased levels of proteins associated with polyubiquitination, folding or degradation, and antioxidant activities. This study reinforces our knowledge of this too little explored but so fundamental interaction between L. pneumophila and A. castellanii, to understand how the bacterium could resist amoeba digestion.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Doença dos Legionários , Humanos , Proteômica , Legionella pneumophila/genética , Homeostase
5.
Oncotarget ; 14: 377-381, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37185128

RESUMO

Stromal myo-/fibroblasts (MFs) account for up to 30% of lamina propria cells in the normal human colon and their number is dramatically increased in colon cancer (CRC). Fibroblasts from cancers, also known as cancer-associated fibroblasts (CAFs), differ from normal colonic MF (N-MFs) and support tumor-promoting inflammation, in part due to increased IL-6 secretion. In this editorial, we highlight recent data obtained regarding IL-6 regulation in colorectal cancer CAFs through vitamin A (retinol) metabolism, discuss current limitations in our understanding of the mechanisms leading to the CAF pro-inflammatory phenotype, and discuss potential approaches to target CAF retinoid metabolism during CRC treatment.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Fibroblastos Associados a Câncer/metabolismo , Vitamina A/metabolismo , Interleucina-6/metabolismo , Fibroblastos/metabolismo , Colo/metabolismo , Neoplasias Colorretais/metabolismo , Microambiente Tumoral/genética
6.
Br J Cancer ; 128(4): 537-548, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482184

RESUMO

BACKGROUND: Increases in IL-6 by cancer-associated fibroblasts (CAFs) contribute to colon cancer progression, but the mechanisms involved in the increase of this tumor-promoting cytokine are unknown. The aim of this study was to identify novel targets involved in the dysregulation of IL-6 expression by CAFs in colon cancer. METHODS: Colonic normal (N), hyperplastic, tubular adenoma, adenocarcinoma tissues, and tissue-derived myo-/fibroblasts (MFs) were used in these studies. RESULTS: Transcriptomic analysis demonstrated a striking decrease in alcohol dehydrogenase 1B (ADH1B) expression, a gene potentially involved in IL-6 dysregulation in CAFs. ADH1B expression was downregulated in approximately 50% of studied tubular adenomas and all T1-4 colon tumors, but not in hyperplastic polyps. ADH1B metabolizes alcohols, including retinol (RO), and is involved in the generation of all-trans retinoic acid (atRA). LPS-induced IL-6 production was inhibited by either RO or its byproduct atRA in N-MFs, but only atRA was effective in CAFs. Silencing ADH1B in N-MFs significantly upregulated LPS-induced IL-6 similar to those observed in CAFs and lead to the loss of RO inhibitory effect on inducible IL-6 expression. CONCLUSION: Our data identify ADH1B as a novel potential mesenchymal tumor suppressor, which plays a critical role in ADH1B/retinoid-mediated regulation of tumor-promoting IL-6.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias do Colo , Interleucina-6 , Humanos , Álcool Desidrogenase , Fibroblastos Associados a Câncer/metabolismo , Neoplasias do Colo/patologia , Fibroblastos/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Tretinoína , Vitamina A/metabolismo
7.
Redox Biol ; 55: 102417, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35933902

RESUMO

Ulcerative colitis (UC) is characterized by widespread relapsing inflammation of the colonic mucosa. Colitis-associated cancer (CAC) is one of the most serious complications of a prolonged history of UC. Hydrogen sulfide (H2S) has emerged as an important physiological mediator of gastrointestinal homeostasis, limiting mucosal inflammation and promoting tissue healing in response to injury. Inhibition of cystathionine-γ-lyase (CSE)-dependent H2S production in animal models of UC has been shown to exacerbate colitis and delay tissue repair. It is unknown whether CSE plays a role in CAC, or the downregulation of CSE expression and/or activity promotes CAC development. In humans, we observed a significant decrease in CSE expression in colonic biopsies from patients with UC. Using the dextran sodium sulfate (DSS) model of epithelium injury-induced colitis and global CSE KO mouse strain, we demonstrated that CSE is critical in limiting mucosal inflammation and stimulating epithelial cell proliferation in response to injury. In vitro studies showed that CSE activity stimulates epithelial cell proliferation, basal and cytokine-stimulated cell migration, as well as cytokine regulation of transepithelial permeability. In the azoxymethane (AOM)/DSS model of CAC, the loss of CSE expression accelerated both the development and progression of CAC. The increased tumor multiplicity and severity of CAC observed in CSE-KO mice were associated with reduced levels of mucosal IL-10 expression and increased levels of IL-6. Restoring CSE expression in bone marrow (BM) cells of CSE-KO mice through reciprocal BM transplantation raised mucosal IL-10 expression, decreased IL-6 level, and reduced the number of aberrant crypt foci and tumors in AOM/DSS-treated mice. These studies demonstrate that CSE expression in BM cells plays a critical role in suppressing CAC in mice. Furthermore, the data suggest that the inhibitory effects of CSE on the development of CAC are due, in part, to the modulation of mucosal pro-and anti-inflammatory cytokine expression.

8.
J Transl Med ; 20(1): 111, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255932

RESUMO

The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Disbiose/terapia , Trato Gastrointestinal , Humanos , Prebióticos , Probióticos/uso terapêutico
9.
Cancers (Basel) ; 13(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063108

RESUMO

The gut microbiota is crucial for physiological development and immunological homeostasis. Alterations of this microbial community called dysbiosis, have been associated with cancers such colorectal cancers (CRC). The pro-carcinogenic potential of this dysbiotic microbiota has been demonstrated in the colon. Recently the role of the microbiota in the efficacy of anti-tumor therapeutic strategies has been described in digestive cancers and in other cancers (e.g., melanoma and sarcoma). Different bacterial species seem to be implicated in these mechanisms: F. nucleatum, B. fragilis, and colibactin-associated E. coli (CoPEC). CoPEC bacteria are prevalent in the colonic mucosa of patients with CRC and they promote colorectal carcinogenesis in susceptible mouse models of CRC. In this review, we report preclinical and clinical data that suggest that CoPEC could be a new factor predictive of poor outcomes that could be used to improve cancer management. Moreover, we describe the possibility of using these bacteria as new therapeutic targets.

10.
Int J Cancer ; 146(11): 3147-3159, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32037530

RESUMO

Colibactin-producing E. coli (CoPEC) are frequently detected in colorectal cancer (CRC) and exhibit procarcinogenic properties. Because increasing evidence show the role of immune environment and especially of antitumor T-cells in CRC development, we investigated the impact of CoPEC on these cells in human CRC and in the APCMin/+ mice colon. T-cell density was evaluated by immunohistochemistry in human tumors known for their CoPEC status. APCmin/+ mice were chronically infected with a CoPEC strain (11G5). Immune cells (neutrophils and T-cell populations) were then quantified by immunofluorescent staining of the colon. The quantification of lymphoid populations was also performed in the mesenteric lymph nodes (MLNs). Here, we show that the colonization of CRC patients by CoPEC is associated with a decrease of tumor-infiltrating T lymphocytes (CD3+ T-cells). Similarly, we demonstrated, in mice, that CoPEC chronic infection decreases CD3+ and CD8+ T-cells and increases colonic inflammation. In addition, we noticed a significant decrease in antitumor T-cells in the MLNs of CoPEC-infected mice compared to that of controls. Moreover, we show that CoPEC infection decreases the antimouse PD-1 immunotherapy efficacy in MC38 tumor model. Our findings suggest that CoPEC could promote a procarcinogenic immune environment through impairment of antitumor T-cell response, leading to tumoral resistance to immunotherapy. CoPEC could thus be a new biomarker predicting the anti-PD-1 response in CRC.


Assuntos
Neoplasias do Colo/terapia , Resistencia a Medicamentos Antineoplásicos/imunologia , Escherichia coli/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Peptídeos/metabolismo , Policetídeos/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/patologia , Feminino , Humanos , Imunoterapia/métodos , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Receptor de Morte Celular Programada 1 , Microambiente Tumoral/imunologia
11.
Int Immunol ; 32(1): 57-68, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31633754

RESUMO

Increased T helper (Th)1/Th17 immune responses are a hallmark of Crohn's disease (CD) immunopathogenesis. CD90+ (myo-)fibroblasts (MFs) are abundant cells in the normal (N) intestinal mucosa contributing to mucosal tolerance via suppression of Th1 cell activity through cell surface membrane-bound PD-L1 (mPD-L1). CD-MFs have a decreased level of mPD-L1. Consequently, mPD-L1-mediated suppression of Th1 cells by CD-MFs is decreased, yet the mechanism responsible for the reduction in mPDL-1 is unknown. Increased expression of matrix metalloproteinases (MMPs) has been reported in CD. Herein we observed that when compared to N- and ulcerative colitis (UC)-MFs, CD-MFs increase in LPS-inducible levels of MMP-7 and -9 with a significant increase in both basal and inducible MMP-10. A similar pattern of MMP expression was observed in the CD-inflamed mucosa. Treatment of N-MFs with a combination of recombinant human MMP-7, -9 and -10 significantly decreased mPD-L1. In contrast, inhibition of MMP activity with MMP inhibitors or anti-MMP-10 neutralizing antibodies restores mPD-L1 on CD-MFs. CD-MFs demonstrated reduced capacity to suppress Th1 and Th17 responses from activated CD4+ T cells. By contrast, supplementation of the CD-MF:T-cell co-cultures with MMP inhibitors or anti-MMP neutralizing antibodies restored the CD-MF-mediated suppression. Our data suggest that (i) increased MMP-10 expression by CD-MFs and concomitant cleavage of PD-L1 from the surface of CD-MFs are likely to be one of the factors contributing to the decrease of mPD-L1-mediated suppression of Th1/Th17 cells in CD; and (ii) MMPs are likely to have a significant role in the intestinal mucosal immune responses.


Assuntos
Antígeno B7-H1/metabolismo , Membrana Celular/metabolismo , Doença de Crohn/metabolismo , Fibroblastos/metabolismo , Metaloproteinases da Matriz/metabolismo , Antígenos Thy-1/metabolismo , Antígeno B7-H1/imunologia , Membrana Celular/imunologia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Humanos , Metaloproteinases da Matriz/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Antígenos Thy-1/imunologia
12.
Int J Mol Sci ; 20(18)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533218

RESUMO

Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.


Assuntos
Microbioma Gastrointestinal , Neoplasias/terapia , Animais , Terapia Combinada , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos da radiação , Humanos , Neoplasias/diagnóstico , Prognóstico , Resultado do Tratamento
13.
World J Gastroenterol ; 24(22): 2327-2347, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904241

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer worldwide. CRC is still associated with a poor prognosis among patients with advanced disease. On the contrary, due to its slow progression from detectable precancerous lesions, the prognosis for patients with early stages of CRC is encouraging. While most robust methods are invasive and costly, actual patient-friendly screening methods for CRC suffer of lack of sensitivity and specificity. Therefore, the development of sensitive, non-invasive and cost-effective methods for CRC detection and prognosis are necessary for increasing the chances of a cure. Beyond its beneficial functions for the host, increasing evidence suggests that the intestinal microbiota is a key factor associated with carcinogenesis. Many clinical studies have reported a disruption in the gut microbiota balance and an alteration in the faecal metabolome of CRC patients, suggesting the potential use of a microbial-based test as a non-invasive diagnostic and/or prognostic tool for CRC screening. This review aims to discuss the microbial signatures associated with CRC known to date, including dysbiosis and faecal metabolome alterations, and the potential use of microbial variation markers for non-invasive early diagnosis and/or prognostic assessment of CRC and advanced adenomas. We will finally discuss the possible use of these markers as predicators for treatment response and their limitations.


Assuntos
Neoplasias Colorretais/diagnóstico , Disbiose/microbiologia , Detecção Precoce de Câncer/métodos , Microbioma Gastrointestinal/fisiologia , Biomarcadores/análise , Carcinogênese/patologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Disbiose/diagnóstico , Disbiose/mortalidade , Disbiose/patologia , Fezes/microbiologia , Humanos , Metaboloma/fisiologia , Prognóstico , Sensibilidade e Especificidade
14.
Cell Microbiol ; 20(11): e12871, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29920917

RESUMO

Prostaglandin E2 (PGE2 ) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase-2 (COX-2)-dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX-2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2 . Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco-2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX-2-dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX-2 and PGE2 in the prostaglandin pathway, but not 5-LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony-Forming Unit (CFU)/dose) increased COX-2 expression in the colonic mucosa. The majority of cells upregulating COX-2 protein expression were located in the colonic lamina propria and colocalised with α-SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor-88-dependent, because silencing of myeloid differentiation factor-88 expression in CMFs abrogated LbGG-induced upregulation of COX-2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX-2-mediated PGE2 , contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Lacticaseibacillus rhamnosus , Fator 88 de Diferenciação Mieloide/metabolismo , Probióticos/farmacologia , Administração Oral , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Células CACO-2 , Colo/citologia , Colo/microbiologia , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Miofibroblastos/metabolismo , Miofibroblastos/microbiologia , Probióticos/administração & dosagem
15.
Antonie Van Leeuwenhoek ; 106(4): 693-706, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25090957

RESUMO

Probiotics represent a potential strategy to influence the host's immune system thereby modulating immune response. Lipoteichoic Acid (LTA) is a major immune-stimulating component of Gram-positive cell envelopes. This amphiphilic polymer, anchored in the cytoplasmic membrane by means of its glycolipid component, typically consists of a poly (glycerol-phosphate) chain with D-alanine and/or glycosyl substitutions. LTA is known to stimulate macrophages in vitro, leading to secretion of inflammatory mediators such as Nitric Oxide (NO). This study investigates the structure-activity relationship of purified LTA from three probiotic Bacillus strains (Bacillus cereus CH, Bacillus subtilis CU1 and Bacillus clausii O/C). LTAs were extracted from bacterial cultures and purified. Chemical modification by means of hydrolysis at pH 8.5 was performed to remove D-alanine. The molecular structure of native and modified LTAs was determined by (1)H NMR and GC-MS, and their inflammatory potential investigated by measuring NO production by RAW 264.7 macrophages. Structural analysis revealed several differences between the newly characterized LTAs, mainly relating to their D-alanylation rates and poly (glycerol-phosphate) chain length. We observed induction of NO production by LTAs from B. subtilis and B. clausii, whereas weaker NO production was observed with B. cereus. LTA dealanylation abrogated NO production independently of the glycolipid component, suggesting that immunomodulatory potential depends on D-alanine substitutions. D-alanine may control the spatial configuration of LTAs and their recognition by cell receptors. Knowledge of molecular mechanisms behind the immunomodulatory abilities of probiotics is essential to optimize their use.


Assuntos
Alanina/análise , Alanina/imunologia , Bacillus/química , Lipopolissacarídeos/análise , Lipopolissacarídeos/imunologia , Probióticos/química , Ácidos Teicoicos/análise , Ácidos Teicoicos/imunologia , Animais , Bacillus/imunologia , Linhagem Celular , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise , Fatores Imunológicos/análise , Fatores Imunológicos/química , Fatores Imunológicos/imunologia , Lipopolissacarídeos/química , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Relação Estrutura-Atividade , Ácidos Teicoicos/química
17.
Appl Environ Microbiol ; 79(24): 7654-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077714

RESUMO

We first determined the analytical specificity and ubiquity (i.e., the ability to detect all or most strains) of a Clostridium perfringens-specific real-time PCR (rtPCR) assay based on the cpa gene (cpa rtPCR) by using a bacterial strain panel composed of C. perfringens and non-C. perfringens Clostridium strains. All non-C. perfringens Clostridium strains tested negative, whereas all C. perfringens strains tested positive with the cpa rtPCR, for an analytical specificity and ubiquity of 100%. The cpa rtPCR assay was then used to confirm the identity of 116 putative C. perfringens isolates recovered after filtration of water samples and culture on mCP agar. Colonies presenting discordant results between the phenotype on mCP agar and cpa rtPCR were identified by sequencing the 16S rRNA and cpa genes. Four mCP(-)/rtPCR(+) colonies were identified as C. perfringens, whereas 3 mCP(+)/rtPCR(-) colonies were identified as non-C. perfringens. The cpa rtPCR was negative with all 51 non-C. perfringens strains and positive with 64 of 65 C. perfringens strains. Finally, we compared mCP agar and a CRENAME (concentration and recovery of microbial particles, extraction of nucleic acids, and molecular enrichment) procedure plus cpa rtPCR (CRENAME + cpa rtPCR) for their abilities to detect C. perfringens spores in drinking water. CRENAME + cpa rtPCR detected as few as one C. perfringens CFU per 100 ml of drinking water sample in less than 5 h, whereas mCP agar took at least 25 h to deliver results. CRENAME + cpa rtPCR also allows the simultaneous and sensitive detection of Escherichia coli and C. perfringens from the same potable water sample. In itself, it could be used to assess the public health risk posed by drinking water potentially contaminated with pathogens more resistant to disinfection.


Assuntos
Toxinas Bacterianas/genética , Técnicas Bacteriológicas/métodos , Proteínas de Ligação ao Cálcio/genética , Clostridium perfringens/isolamento & purificação , Meios de Cultura/química , Água Potável/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Esporos Bacterianos/isolamento & purificação , Fosfolipases Tipo C/genética , Ágar , Clostridium perfringens/genética , Sensibilidade e Especificidade , Esporos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA