Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
EMBO Rep ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806674

RESUMO

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.

2.
Sci Adv ; 10(13): eadk0564, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552015

RESUMO

Deregulated centrosome numbers are frequently found in human cancer and can promote malignancies in model organisms. Current research aims to clarify if extra centrosomes are cause or consequence of malignant transformation, and if their biogenesis can be targeted for therapy. Here, we show that oncogene-driven blood cancer is inert to genetic manipulation of centrosome numbers, whereas the formation of DNA damage-induced malignancies is delayed. We provide first evidence that this unexpected phenomenon is connected to extra centrosomes eliciting a pro-death signal engaging the apoptotic machinery. Apoptosis induction requires the PIDDosome multi-protein complex, as it can be abrogated by loss of any of its three components, Caspase-2, Raidd/Cradd, or Pidd1. BCL2 overexpression equally blocks cell death, documenting for the first time induction of mitochondrial apoptosis downstream of extra centrosomes. Our findings demonstrate context-dependent effects of centrosome amplification during transformation and ask to adjust current belief that extra centrosomes are intrinsically pro-tumorigenic.


Assuntos
Centrossomo , Neoplasias , Humanos , Apoptose/genética , Neoplasias/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Dano ao DNA
3.
Cell Death Differ ; 31(1): 119-131, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001256

RESUMO

Paracetamol (acetaminophen, APAP) overdose severely damages mitochondria and triggers several apoptotic processes in hepatocytes, but the final outcome is fulminant necrotic cell death, resulting in acute liver failure and mortality. Here, we studied this switch of cell death modes and demonstrate a non-canonical role of the apoptosis-regulating BCL-2 homolog BIM/Bcl2l11 in promoting necrosis by regulating cellular bioenergetics. BIM deficiency enhanced total ATP production and shifted the bioenergetic profile towards glycolysis, resulting in persistent protection from APAP-induced liver injury. Modulation of glucose levels and deletion of Mitofusins confirmed that severe APAP toxicity occurs only in cells dependent on oxidative phosphorylation. Glycolytic hepatocytes maintained elevated ATP levels and reduced ROS, which enabled lysosomal recycling of damaged mitochondria by mitophagy. The present study highlights how metabolism and bioenergetics affect drug-induced liver toxicity, and identifies BIM as important regulator of glycolysis, mitochondrial respiration, and oxidative stress signaling.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Acetaminofen/toxicidade , Fígado/metabolismo , Hepatócitos/metabolismo , Metabolismo Energético , Proteína 11 Semelhante a Bcl-2/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Necrose/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Mitocôndrias Hepáticas/metabolismo
4.
EMBO J ; 42(20): e113510, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530438

RESUMO

Unscheduled increases in ploidy underlie defects in tissue function, premature aging, and malignancy. A concomitant event to polyploidization is the amplification of centrosomes, the main microtubule organization centers in animal cells. Supernumerary centrosomes are frequent in tumors, correlating with higher aggressiveness and poor prognosis. However, extra centrosomes initially also exert an onco-protective effect by activating p53-induced cell cycle arrest. If additional signaling events initiated by centrosomes help prevent pathology is unknown. Here, we report that extra centrosomes, arising during unscheduled polyploidization or aberrant centriole biogenesis, induce activation of NF-κB signaling and sterile inflammation. This signaling requires the NEMO-PIDDosome, a multi-protein complex composed of PIDD1, RIPK1, and NEMO/IKKγ. Remarkably, the presence of supernumerary centrosomes suffices to induce a paracrine chemokine and cytokine profile, able to polarize macrophages into a pro-inflammatory phenotype. Furthermore, extra centrosomes increase the immunogenicity of cancer cells and render them more susceptible to NK-cell attack. Hence, the PIDDosome acts as a dual effector, able to engage not only the p53 network for cell cycle control but also NF-κB signaling to instruct innate immunity.


Assuntos
NF-kappa B , Neoplasias , Animais , Centrossomo/metabolismo , Inflamação/patologia , Monitorização Imunológica , Neoplasias/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Humanos
5.
Protein Cell ; 14(8): 560-578, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526344

RESUMO

Polyploid cells, which contain more than one set of chromosome pairs, are very common in nature. Polyploidy can provide cells with several potential benefits over their diploid counterparts, including an increase in cell size, contributing to organ growth and tissue homeostasis, and improving cellular robustness via increased tolerance to genomic stress and apoptotic signals. Here, we focus on why polyploidy in the cell occurs and which stress responses and molecular signals trigger cells to become polyploid. Moreover, we discuss its crucial roles in cell growth and tissue regeneration in the heart, liver, and other tissues.


Assuntos
Hepatócitos , Fígado , Humanos , Ciclo Celular , Poliploidia , Homeostase
6.
Int J Cancer ; 152(11): 2321-2330, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36810770

RESUMO

The impact of a pathogen on host disease can only be studied in samples covering the entire spectrum of pathogenesis. Persistent oncogenic human papilloma virus (HPV) infection is the most common cause for cervical cancer. Here, we investigate HPV-induced host epigenome-wide changes prior to development of cytological abnormalities. Using cervical sample methylation array data from disease-free women with or without an oncogenic HPV infection, we develop the WID (Women's cancer risk identification)-HPV, a signature reflective of changes in the healthy host epigenome related to high-risk HPV strains (AUC = 0.78, 95% CI: 0.72-0.85, in nondiseased women). Looking at HPV-associated changes across disease development, HPV-infected women with minor cytological alterations (cervical intraepithelial neoplasia grade 1/2, CIN1/2), but surprisingly not those with precancerous changes or invasive cervical cancer (CIN3+), show an increased WID-HPV index, indicating the WID-HPV may reflect a successful viral clearance response absent in progression to cancer. Further investigation revealed the WID-HPV is positively associated with apoptosis (ρ = 0.48; P < .001) and negatively associated with epigenetic replicative age (ρ = -0.43; P < .001). Taken together, our data suggest the WID-HPV captures a clearance response associated with apoptosis of HPV-infected cells. This response may be dampened or lost with increased underlying replicative age of infected cells, resulting in progression to cancer.


Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Colo do Útero/patologia , Epigênese Genética , Papillomaviridae/genética
7.
Cells ; 12(3)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36766792

RESUMO

Glucocorticoids (GCs) are used to treat inflammatory disorders such as multiple sclerosis (MS) by exerting prominent activities in T cells including apoptosis induction and suppression of cytokine production. However, little is known about their impact on energy metabolism, although it is widely accepted that this process is a critical rheostat of T cell activity. We thus tested the hypothesis that GCs control genes and processes involved in nutrient transport and glycolysis. Our experiments revealed that escalating doses of dexamethasone (Dex) repressed energy metabolism in murine and human primary T cells. This effect was mediated by the GC receptor and unrelated to both apoptosis induction and Stat1 activity. In contrast, treatment of human T cells with rapamycin abolished the repression of metabolic gene expression by Dex, unveiling mTOR as a critical target of GC action. A similar phenomenon was observed in MS patients after intravenous methylprednisolon (IVMP) pulse therapy. The expression of metabolic genes was reduced in the peripheral blood T cells of most patients 24 h after GC treatment, an effect that correlated with disease activity. Collectively, our results establish the regulation of T cell energy metabolism by GCs as a new immunomodulatory principle.


Assuntos
Glucocorticoides , Esclerose Múltipla , Humanos , Camundongos , Animais , Glucocorticoides/uso terapêutico , Dexametasona/farmacologia , Linfócitos T , Esclerose Múltipla/tratamento farmacológico , Metabolismo Energético
8.
Front Immunol ; 13: 967914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110849

RESUMO

MicroRNAs are small non-coding RNAs that have emerged as post-transcriptional regulators involved in development and function of different types of immune cells, and aberrant miRNA expression has often been linked to cancer. One prominent miRNA family in the latter setting is the miR-15 family, consisting of the three clusters miR-15a/16-1, miR-15b/16-2 and miR-497/195, which is best known for its prominent tumor suppressive role in chronic lymphocytic leukemia (CLL). However, little is known about the physiological role of the miR-15 family. In this study, we provide a comprehensive in vivo analysis of the physiological functions of miR-15a/16-1 and miR-15b/16-2, both of which are highly expressed in immune cells, in early B cell development. In particular, we report a previously unrecognized physiological function of the miR-15 family in restraining progenitor B cell expansion, as loss of both clusters induces an increase of the pro-B as well as pre-B cell compartments. Mechanistically, we find that the miR-15 family mediates its function through repression of at least two different types of target genes: First, we confirm that the miR-15 family suppresses several prominent cell cycle regulators such as Ccne1, Ccnd3 and Cdc25a also in vivo, thereby limiting the proliferation of progenitor B cells. Second, this is complemented by direct repression of the Il7r gene, which encodes the alpha chain of the IL-7 receptor (IL7R), one of the most critical growth factor receptors for early B cell development. In consequence, deletion of the miR-15a/16-1 and miR-15b/16-2 clusters stabilizes Il7r transcripts, resulting in enhanced IL7R surface expression. Consistently, our data show an increased activation of PI3K/AKT, a key signaling pathway downstream of the IL7R, which likely drives the progenitor B cell expansion we describe here. Thus, by deregulating a target gene network of cell cycle and signaling mediators, loss of the miR-15 family establishes a pro-proliferative milieu that manifests in an enlarged progenitor B cell pool.


Assuntos
MicroRNAs , Receptores de Interleucina-7 , Proliferação de Células/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores de Interleucina-7/genética
9.
Cell Metab ; 34(10): 1548-1560.e6, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36041455

RESUMO

Sterol deficiency triggers SCAP-mediated SREBP activation, whereas hypernutrition together with ER stress activates SREBP1/2 via caspase-2. Whether these pathways interact and how they are selectively activated by different dietary cues are unknown. Here, we reveal regulatory crosstalk between the two pathways that controls the transition from hepatosteatosis to steatohepatitis. Hepatic ER stress elicited by NASH-inducing diets activates IRE1 and induces expression of the PIDDosome subunits caspase-2, RAIDD, and PIDD1, along with INSIG2, an inhibitor of SCAP-dependent SREBP activation. PIDDosome assembly activates caspase-2 and sustains IRE1 activation. PIDDosome ablation or IRE1 inhibition blunt steatohepatitis and diminish INSIG2 expression. Conversely, while inhibiting simple steatosis, SCAP ablation amplifies IRE1 and PIDDosome activation and liver damage in NASH-diet-fed animals, effects linked to ER disruption and preventable by IRE1 inhibition. Thus, the PIDDosome and SCAP pathways antagonistically modulate nutrient-induced hepatic ER stress to control non-linear transition from simple steatosis to hepatitis, a key step in NASH pathogenesis.


Assuntos
Caspase 2 , Hepatopatia Gordurosa não Alcoólica , Animais , Caspase 2/metabolismo , Dieta , Frutose/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Esteróis/metabolismo
10.
Cells ; 11(14)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35883569

RESUMO

Glucocorticoids (GC) are highly potent negative regulators of immune and inflammatory responses. Effects of GC are primarily mediated by the glucocorticoid receptor (GR) which is expressed by all cell types of the immune system. It is, therefore, difficult to elucidate how endogenous GC mediate their effects on immune responses that involve multiple cellular interactions between various immune cell subsets. This review focuses on endogenous GC targeting specific cells of the immune system in various animal models of infection and inflammation. Without the timed release of these hormones, animals infected with various microbes or challenged in inflammatory disease models succumb as a consequence of overshooting immune and inflammatory responses. A clearer picture is emerging that endogenous GC thereby act in a cell-specific and disease model-dependent manner, justifying the need to develop techniques that target GC to individual immune cell types for improved clinical application.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Animais , Modelos Animais de Doenças , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Infecções/metabolismo , Inflamação/metabolismo , Camundongos , Receptores de Glucocorticoides/metabolismo
11.
Mol Oncol ; 16(15): 2771-2787, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35673965

RESUMO

Checkpoint kinase 1 (CHK1; encoded by CHEK1) is an essential gene that monitors DNA replication fidelity and prevents mitotic entry in the presence of under-replicated DNA or exogenous DNA damage. Cancer cells deficient in p53 tumor suppressor function reportedly develop a strong dependency on CHK1 for proper cell cycle progression and maintenance of genome integrity, sparking interest in developing kinase inhibitors. Pharmacological inhibition of CHK1 triggers B-Cell CLL/Lymphoma 2 (BCL2)-regulated cell death in malignant cells largely independently of p53, and has been suggested to kill p53-deficient cancer cells even more effectively. Next to p53 status, our knowledge about factors predicting cancer cell responsiveness to CHK1 inhibitors is limited. Here, we conducted a genome-wide CRISPR/Cas9-based loss-of-function screen to identify genes defining sensitivity to chemical CHK1 inhibitors. Next to the proapoptotic BCL2 family member, BCL2 Binding Component 3 (BBC3; also known as PUMA), the F-box protein S-phase Kinase-Associated Protein 2 (SKP2) was validated to tune the cellular response to CHK1 inhibition. SKP2 is best known for degradation of the Cyclin-dependent Kinase Inhibitor 1B (CDKN1B; also known as p27), thereby promoting G1-S transition and cell cycle progression in response to mitogens. Loss of SKP2 resulted in the predicted increase in p27 protein levels, coinciding with reduced DNA damage upon CHK1-inhibitor treatment and reduced cell death in S-phase. Conversely, overexpression of SKP2, which consequently results in reduced p27 protein levels, enhanced cell death susceptibility to CHK1 inhibition. We propose that assessing SKP2 and p27 expression levels in human malignancies will help to predict the responsiveness to CHK1-inhibitor treatment.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27 , Proteínas Quinases Associadas a Fase S , Proteína Supressora de Tumor p53 , Morte Celular , Quinase 1 do Ponto de Checagem , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
Life Sci Alliance ; 5(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35459737

RESUMO

MiRNAs are small noncoding RNAs that promote the sequence-specific repression of their respective target genes, thereby regulating diverse physiological as well as pathological processes. Here, we identify a novel role of the miR-26 family in early B cell development. We show that enhanced expression of miR-26 family members potently blocks the pre-B to immature B cell transition, promotes pre-B cell expansion and eventually enables growth factor independency. Mechanistically, this is at least partially mediated by direct repression of the tumor-suppressor Pten, which consequently enhances PI3K-AKT signaling. Conversely, limiting miR-26 activity in a more physiological loss-of-function approach counteracts proliferation and enhances pre-B cell differentiation in vitro as well as in vivo. We therefore postulate a rheostat-like role for the miR-26 family in progenitor B cells, with an increase in mature miR-26 levels signaling cell expansion, and facilitating pre-B to the immature B cell progression when reduced.


Assuntos
MicroRNAs , Fosfatidilinositol 3-Quinases , Proliferação de Células/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
13.
Biochem Soc Trans ; 50(2): 813-824, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35343572

RESUMO

The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.


Assuntos
Proteína Adaptadora de Sinalização CRADD , Caspase 2 , Apoptose/fisiologia , Proteína Adaptadora de Sinalização CRADD/genética , Proteína Adaptadora de Sinalização CRADD/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular , Morte Celular , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/genética , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Humanos , Inflamação
15.
EMBO J ; 41(2): e108690, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34931711

RESUMO

During apoptosis, the BCL-2-family protein tBID promotes mitochondrial permeabilization by activating BAX and BAK and by blocking anti-apoptotic BCL-2 members. Here, we report that tBID can also mediate mitochondrial permeabilization by itself, resulting in release of cytochrome c and mitochondrial DNA, caspase activation and apoptosis even in absence of BAX and BAK. This previously unrecognized activity of tBID depends on helix 6, homologous to the pore-forming regions of BAX and BAK, and can be blocked by pro-survival BCL-2 proteins. Importantly, tBID-mediated mitochondrial permeabilization independent of BAX and BAK is physiologically relevant for SMAC release in the immune response against Shigella infection. Furthermore, it can be exploited to kill leukaemia cells with acquired venetoclax resistance due to lack of active BAX and BAK. Our findings define tBID as an effector of mitochondrial permeabilization in apoptosis and provide a new paradigm for BCL-2 proteins, with implications for anti-bacterial immunity and cancer therapy.


Assuntos
Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/química , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Células HCT116 , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Domínios Proteicos , Proteólise , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
Cancers (Basel) ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36612027

RESUMO

Aneuploidy is the gain or loss of entire chromosomes, chromosome arms or fragments. Over 100 years ago, aneuploidy was described to be a feature of cancer and is now known to be present in 68-90% of malignancies. Aneuploidy promotes cancer growth, reduces therapy response and frequently worsens prognosis. Chromosomal instability (CIN) is recognized as the main cause of aneuploidy. CIN itself is a dynamic but stochastic process consisting of different DNA content-altering events. These can include impaired replication fidelity and insufficient clearance of DNA damage as well as chromosomal mis-segregation, micronuclei formation, chromothripsis or cytokinesis failure. All these events can disembogue in segmental, structural and numerical chromosome alterations. While low levels of CIN can foster malignant disease, high levels frequently trigger cell death, which supports the "aneuploidy paradox" that refers to the intrinsically negative impact of a highly aberrant karyotype on cellular fitness. Here, we review how the cellular response to CIN and aneuploidy can drive the clearance of karyotypically unstable cells through the induction of apoptosis. Furthermore, we discuss the different modes of p53 activation triggered in response to mitotic perturbations that can potentially trigger CIN and/or aneuploidy.

17.
Cell Death Dis ; 12(12): 1151, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903710

RESUMO

Breast cancer (BC) treatment frequently involves microtubule-targeting agents (MTAs), such as paclitaxel, that arrest cells in mitosis. Sensitivity to MTAs is defined by a subset of pro- and anti-apoptotic BCL2 family proteins controlling mitochondrial apoptosis. Here, we aimed to determine their prognostic value in primary tumour samples from 92 BC patients. Our analysis identified high NOXA/PMAIP mRNA expression levels as an independent prognostic marker for improved relapse-free survival (RFS) and overall survival (OS) in multivariate analysis in BC patients, independent of their molecular subtype. Analysis of available TCGA datasets of 1060 BC patients confirmed our results and added a clear predictive value of NOXA mRNA levels for patients who received MTA-based therapy. In this TCGA cohort, 122 patients received MTA-treatment and high NOXA mRNA levels correlated with their progression-free interval (PFI) and OS. Our follow-up analyses in a panel of BC cell lines of different molecular subtypes identified NOXA protein expression as a key determinant of paclitaxel sensitivity in triple-negative breast cancer (TNBC) cells. Moreover, we noted highest additive effects between paclitaxel and chemical inhibition of BCLX, but not BCL2 or MCL1, documenting dependence of TNBC cells on BCLX for survival and paclitaxel sensitivity defined by NOXA expression levels.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Neoplasias de Mama Triplo Negativas , Proteínas Reguladoras de Apoptose , Humanos , Microtúbulos/metabolismo , Recidiva Local de Neoplasia , Paclitaxel/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
18.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639222

RESUMO

P53 is known as the most critical tumor suppressor and is often referred to as the guardian of our genome. More than 40 years after its discovery, we are still struggling to understand all molecular details on how this transcription factor prevents oncogenesis or how to leverage current knowledge about its function to improve cancer treatment. Multiple cues, including DNA-damage or mitotic errors, can lead to the stabilization and nuclear translocation of p53, initiating the expression of multiple target genes. These transcriptional programs may be cell-type- and stimulus-specific, as is their outcome that ultimately imposes a barrier to cellular transformation. Cell cycle arrest and cell death are two well-studied consequences of p53 activation, but, while being considered critical, they do not fully explain the consequences of p53 loss-of-function phenotypes in cancer. Here, we discuss how mitotic errors alert the p53 network and give an overview of multiple ways that p53 can trigger cell death. We argue that a comparative analysis of different types of p53 responses, elicited by different triggers in a time-resolved manner in well-defined model systems, is critical to understand the cell-type-specific cell fate induced by p53 upon its activation in order to resolve the remaining mystery of its tumor-suppressive function.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Regulação da Expressão Gênica , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Diferenciação Celular , Instabilidade Genômica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética
19.
J Hepatol ; 75(5): 1177-1191, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34228992

RESUMO

A balanced increase in DNA content (ploidy) is observed in some human cell types, including bone-resorbing osteoclasts, platelet-producing megakaryocytes, cardiomyocytes or hepatocytes. The impact of increased hepatocyte ploidy on normal physiology and diverse liver pathologies is still poorly understood. Recent findings suggest swift genetic adaptation to hepatotoxic stress and the protection from malignant transformation as beneficial effects. Herein, we discuss the molecular mechanisms regulating hepatocyte polyploidisation and its implication for different liver diseases and hepatocellular carcinoma. We report on centrosomes' role in limiting polyploidy by activating the p53 signalling network (via the PIDDosome multiprotein complex) and we discuss the role of this pathway in liver disease. Increased hepatocyte ploidy is a hallmark of hepatic inflammation and may play a protective role against liver cancer. Our evolving understanding of hepatocyte ploidy is discussed from the perspective of its potential clinical application for risk stratification, prognosis, and novel therapeutic strategies in liver disease and hepatocellular carcinoma.


Assuntos
Fígado/efeitos dos fármacos , Poliploidia , Humanos , Fígado/patologia , Fígado/fisiopatologia , Neoplasias Hepáticas/patologia , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA