Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 11(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888255

RESUMO

Polyphenols are widely acknowledged for their health benefits, especially for the prevention of inflammatory and age-related diseases. We previously demonstrated that hydroxytyrosol (HT) and procyanidins (PCy), alone or in combination, drive preventive anti-osteoathritic effects in vivo. However, the lack of sufficient clinical evidences on the relationship between dietary phytochemicals and osteoarthritis remains. In this light, we investigated in humans the potential osteoarticular benefit of a grapeseed and olive extract (OPCO) characterized for its hydroxytyrosol (HT) and procyanidins (PCy) content. We first validated, in vitro, the anti-inflammatory and chondroprotective properties of the extract on primary cultured human articular chondrocytes stimulated by interleukin-1 beta (IL-1 ß). The sparing effect involved a molecular mechanism dependent on the nuclear transcription factor-kappa B (NF-κB) pathway. To confirm the clinical relevance of such a nutritional strategy, we designed an innovative clinical approach taking into account the metabolites that are formed during the digestion process and that appear in circulation after the ingestion of the OPCO extract. Blood samples from volunteers were collected following ingestion, absorption, and metabolization of the extract and then were processed and applied on human primary chondrocyte cultures. This original ex vivo methodology confirmed at a clinical level the chondroprotective properties previously observed in vitro and in vivo.


Assuntos
Absorção Fisico-Química/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Condrócitos/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Adulto , Células Cultivadas , Voluntários Saudáveis , Humanos , Interleucina-1beta/sangue , Masculino , NF-kappa B/sangue , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Proantocianidinas/farmacologia , Adulto Jovem
2.
Biomaterials ; 32(11): 2862-70, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21276612

RESUMO

An injectable hydrogel, acting as a reservoir for cell delivery and mimicking the native environment, offers promise for nucleus pulposus (NP) repair and regeneration. Herein, the potential of a stabilised type II collagen hydrogel using poly(ethylene glycol) ether tetrasuccinimidyl glutarate (4S-StarPEG) cross-linker, enriched with hyaluronic acid (HA) was investigated. The optimally stabilised type II collagen hydrogel was determined by assessing free amine groups, resistance to enzymatic degradation, gel point. The potential toxicity of the cross-linker was initially assessed against adipose-derived stem cells (ADSCs). After addition of HA (molar ratio type II collagen:HA 9:0, 9:1, 9:4.5, 9:9) within the hydrogel, the behaviour of the encapsulated NP cells was evaluated using cell proliferation assay, gene expression analysis, cell distribution and cell morphology. A significant decrease (p < 0.05) in the free amine groups of collagen was observed, confirming successful cross-linking. Gelation was independent of the concentration of 4S-StarPEG (8 min at 37 °C). The 1 mm cross-linked hydrogel yielded the most stable after enzymatic degradation (p < 0.05). No toxicity of the 4S-StarPEG was noted for the ADSCs. NP cell viability was high regardless of the concentration of HA (>80%). A cell proliferation was not seen after 14 days in its presence. At a gene expression level, HA did not influence NP cells phenotype after seven days in culture. After seven days in culture, the type I collagen mRNA expression was maintained (p > 0.05). The optimally stabilised and functionalised type II collagen/HA hydrogel system developed in this study shows promise as an injectable reservoir system for intervertebral disc regeneration.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Disco Intervertebral/citologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Colágeno Tipo I/química , Colágeno Tipo II/química , Ácido Hialurônico/química , Injeções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA