Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(2): 112039, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749664

RESUMO

The central circadian regulator within the suprachiasmatic nucleus transmits time of day information by a diurnal spiking rhythm driven by molecular clock genes controlling membrane excitability. Most brain regions, including the hippocampus, harbor similar intrinsic circadian transcriptional machinery, but whether these molecular programs generate oscillations of membrane properties is unclear. Here, we show that intrinsic excitability of mouse dentate granule neurons exhibits a 24-h oscillation that controls spiking probability. Diurnal changes in excitability are mediated by antiphase G-protein regulation of potassium and sodium currents that reduce excitability during the Light phase. Disruption of the circadian transcriptional machinery by conditional deletion of Bmal1 enhances excitability selectively during the Light phase by removing G-protein regulation. These results reveal that circadian transcriptional machinery regulates intrinsic excitability by coordinated regulation of ion channels by G-protein signaling, highlighting a potential novel mechanism of cell-autonomous oscillations.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Camundongos , Animais , Ritmo Circadiano/fisiologia , Neurônios/fisiologia , Núcleo Supraquiasmático/fisiologia , Proteínas de Ligação ao GTP , Giro Denteado , Relógios Circadianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA