Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 481(4): 279-293, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314636

RESUMO

Tocopherols are lipophilic antioxidants known as vitamin E and synthesized from the condensation of two metabolic pathways leading to the formation of homogentisate and phytyl diphosphate. While homogentisate is derived from tyrosine metabolism, phytyl diphosphate may be formed from geranylgeranyl diphosphate or phytol recycling from chlorophyll degradation. Here, we hypothesized that abscisic acid (ABA) could induce tocopherol biosynthesis in sweet cherries by modifying the expression of genes involved in vitamin E biosynthesis, including those from the phytol recycling pathway. Hence, the expression of key tocopherol biosynthesis genes was determined together with vitamin E and chlorophyll contents during the natural development of sweet cherries on the tree. Moreover, the effects of exogenously applied ABA on the expression of key tocopherol biosynthesis genes were also investigated during on-tree fruit development, and tocopherols and chlorophylls contents were analyzed. Results showed that the expression of tocopherol biosynthesis genes, including VTE5, VTE6, HPPD and HPT showed contrasting patterns of variation, but in all cases, increased by 2- and 3-fold over time during fruit de-greening. This was not the case for GGDR and VTE4, the first showing constitutive expression during fruit development and the second with marked down-regulation at ripening onset. Furthermore, exogenous ABA stimulated the production of both α- and γ-tocopherols by 60% and 30%, respectively, promoted chlorophyll degradation and significantly enhanced VTE5 and VTE6 expression, and also that of HPPD and VTE4, altogether increasing total tocopherol accumulation. In conclusion, ABA increases promote the transcription of phytol recycling enzymes, which may contribute to vitamin E biosynthesis during fruit development in stone fruits like sweet cherries.


Assuntos
Difosfatos , Prunus avium , Vitamina E , Vitamina E/metabolismo , Frutas , Prunus avium/metabolismo , Ácido Abscísico/metabolismo , Tocoferóis/metabolismo , Clorofila/metabolismo , Fitol/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Plant Physiol ; 251: 153225, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32653729

RESUMO

Avocados (Persea americana Mill.) are climacteric fruits, the ripening of which during postharvest at room temperature is strongly ethylene dependent. However, the role of other phytohormones in the modulation of postharvest ripening of avocados is still poorly understood. The optimal ripening state of avocados is attained a few days after harvest depending on the genotype, growing region and initial maturity stage of the fruit, and cold temperature storage is commonly used to delay this process. Here, we hypothesized that the ripening of avocados at room temperature may be governed not only by ethylene, but also by other phytohormones. With this aim, we analyzed the hormonal profiling of avocados subjected to either 4 °C and 25 °C during 10 days of postharvest. A biphasic response was observed during postharvest ripening of avocados at room temperature. While ethylene alone appeared to govern fruit ripening during the first transfer from cold to room temperature, a complex hormonal interplay occurred during ripening of avocados leading to a progressive fruit softening at room temperatures. Aside from ethylene, auxin, gibberellins, jasmonates and ABA appeared to be involved in avocado fruit ripening during postharvest at room temperature. Cold storage for a period of 10 days inhibited this hormonal response related to ripening. Furthermore, avocados stored at cold temperatures underwent a quick response in order to tolerate cold stress leading to changes in endogenous ABA and jasmonates. We conclude that a complex hormonal interplay, rather than ethylene alone, modulates postharvest ripening of avocados and that cold storage can effectively be employed as a technique to prevent avocados from a rapid ripening thanks to the cold stress tolerance mechanisms deployed by fruits through multiple hormonal regulation.


Assuntos
Aclimatação , Temperatura Baixa , Frutas/crescimento & desenvolvimento , Persea/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Armazenamento de Alimentos , Frutas/fisiologia , Persea/crescimento & desenvolvimento
3.
Antioxidants (Basel) ; 9(5)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397429

RESUMO

(1) Background: Tocochromanols are a group of fat-soluble compounds including vitamin E (tocopherols and tocotrienols) and plastochromanol-8, and just one avocado can contain up to 20% of the required vitamin E daily intake. (2) Methods: HPLC and LC-MS/MS analyses were performed in avocados of various varieties and origin for the identification and quantification of tocopherols, tocotrienols and plastochromanol-8. After selection of the variety with the highest vitamin E content, we evaluated to what extent short- (4 h) and long-term (10 d) cold storage influences the accumulation of tocochromanols. (3) Results: Analyses revealed that "Bacon" avocados (Persea americana Mill. cv. Bacon) were the richest in vitamin E compared to other avocado varieties (including the highly commercialized Hass variety), and they not only accumulated tocopherols (with 110 µg of a-tocopherol per g dry matter), but also tocotrienols (mostly in the form of g-tocotrienol, with 3 µg per g dry matter) and plastochromanol-8 (4.5 µg per g dry matter). While short-term cold shock did not negatively influence a-tocopherol contents, it increased those of g-tocopherol, g-tocotrienol, and plastochromanol-8 and decreased those of d-tocotrienol. Furthermore, storage of Bacon avocados for 10d led to a 20% decrease in the contents of a-tocopherol, whereas the contents of other tocopherols, tocotrienols and plastochromanol-8 were not affected. (4) Conclusions: It is concluded that Bacon avocados (i) are very rich in a-tocopherol, (ii) not only contain tocopherols, but also tocotrienols and plastochromanol-8, and (iii) their nutritional vitamin E value is negatively influenced by long-term cold storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA