Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(9): e17493, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239723

RESUMO

The future of tropical forests hinges on the balance between disturbance rates, which are expected to increase with climate change, and tree growth. Whereas tree growth is a slow process, disturbance events occur sporadically and tend to be short-lived. This difference challenges forest monitoring to achieve sufficient resolution to capture tree growth, while covering the necessary scale to characterize disturbance rates. Airborne LiDAR time series can address this challenge by measuring landscape scale changes in canopy height at 1 m resolution. In this study, we present a robust framework for analysing disturbance and recovery processes in LiDAR time series data. We apply this framework to 8000 ha of old-growth tropical forests over a 4-5-year time frame, comparing growth and disturbance rates between Borneo, the eastern Amazon and the Guiana shield. Our findings reveal that disturbance was balanced by growth in eastern Amazonia and the Guiana shield, resulting in a relatively stable mean canopy height. In contrast, tall Bornean forests experienced a decrease in canopy height due to numerous small-scale (<0.1 ha) disturbance events outweighing the gains due to growth. Within sites, we found that disturbance rates were weakly related to topography, but significantly increased with maximum canopy height. This could be because taller trees were particularly vulnerable to disturbance agents such as drought, wind and lightning. Consequently, we anticipate that tall forests, which contain substantial carbon stocks, will be disproportionately affected by the increasing severity of extreme weather events driven by climate change.


Assuntos
Mudança Climática , Florestas , Árvores , Árvores/crescimento & desenvolvimento , Bornéu , Clima Tropical , Brasil
2.
Proc Natl Acad Sci U S A ; 121(10): e2313312121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412128

RESUMO

Somatic mutations potentially play a role in plant evolution, but common expectations pertaining to plant somatic mutations remain insufficiently tested. Unlike in most animals, the plant germline is assumed to be set aside late in development, leading to the expectation that plants accumulate somatic mutations along growth. Therefore, several predictions were made on the fate of somatic mutations: mutations have generally low frequency in plant tissues; mutations at high frequency have a higher chance of intergenerational transmission; branching topology of the tree dictates mutation distribution; and exposure to UV (ultraviolet) radiation increases mutagenesis. To provide insights into mutation accumulation and transmission in plants, we produced two high-quality reference genomes and a unique dataset of 60 high-coverage whole-genome sequences of two tropical tree species, Dicorynia guianensis (Fabaceae) and Sextonia rubra (Lauraceae). We identified 15,066 de novo somatic mutations in D. guianensis and 3,208 in S. rubra, surprisingly almost all found at low frequency. We demonstrate that 1) low-frequency mutations can be transmitted to the next generation; 2) mutation phylogenies deviate from the branching topology of the tree; and 3) mutation rates and mutation spectra are not demonstrably affected by differences in UV exposure. Altogether, our results suggest far more complex links between plant growth, aging, UV exposure, and mutation rates than commonly thought.


Assuntos
Fabaceae , Lauraceae , Animais , Árvores/genética , Mutação , Taxa de Mutação
3.
Nat Commun ; 13(1): 917, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177619

RESUMO

Predictions of the magnitude and timing of leaf phenology in Amazonian forests remain highly controversial. Here, we use terrestrial LiDAR surveys every two weeks spanning wet and dry seasons in Central Amazonia to show that plant phenology varies strongly across vertical strata in old-growth forests, but is sensitive to disturbances arising from forest fragmentation. In combination with continuous microclimate measurements, we find that when maximum daily temperatures reached 35 °C in the latter part of the dry season, the upper canopy of large trees in undisturbed forests lost plant material. In contrast, the understory greened up with increased light availability driven by the upper canopy loss, alongside increases in solar radiation, even during periods of drier soil and atmospheric conditions. However, persistently high temperatures in forest edges exacerbated the upper canopy losses of large trees throughout the dry season, whereas the understory in these light-rich environments was less dependent on the altered upper canopy structure. Our findings reveal a strong influence of edge effects on phenological controls in wet forests of Central Amazonia.


Assuntos
Florestas , Folhas de Planta/fisiologia , Árvores/fisiologia , Brasil , Luz , Microclima , Estações do Ano , Solo/química , Água/química
4.
J Geophys Res Biogeosci ; 125(8): e2020JG005677, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32999796

RESUMO

Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems.

5.
Ecol Appl ; 30(1): e02004, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520573

RESUMO

Secondary forests are a prominent component of tropical landscapes, and they constitute a major atmospheric carbon sink. Rates of carbon accumulation are usually inferred from chronosequence studies, but direct estimates of carbon accumulation based on long-term monitoring of stands are rarely reported. Recent compilations on secondary forest carbon accumulation in the Neotropics are heavily biased geographically as they do not include estimates from the Guiana Shield. We analysed the temporal trajectory of aboveground carbon accumulation and floristic composition at one 25-ha secondary forest site in French Guiana. The site was clear-cut in 1976, abandoned thereafter, and one large plot (6.25 ha) has been monitored continuously since. We used Bayesian modeling to assimilate inventory data and simulate the long-term carbon accumulation trajectory. Canopy change was monitored using two aerial lidar surveys conducted in 2009 and 2017. We compared the dynamics of this site with that of a surrounding old-growth forest. Finally, we compared our results with that from secondary forests in Costa Rica, which is one of the rare long-term monitoring programs reaching a duration comparable to our study. Twenty years after abandonment, aboveground carbon stock was 64.2 (95% credibility interval 46.4, 89.0) Mg C/ha, and this stock increased to 101.3 (78.7, 128.5) Mg C/ha 20 yr later. The time to accumulate one-half of the mean aboveground carbon stored in the nearby old-growth forest (185.6 [155.9, 200.2] Mg C/ha) was estimated at 35.0 [20.9, 55.9] yr. During the first 40 yr, the contribution of the long-lived pioneer species Xylopia nitida, Goupia glabra, and Laetia procera to the aboveground carbon stock increased continuously. Secondary forest mean-canopy height measured by lidar increased by 1.14 m in 8 yr, a canopy-height increase consistent with an aboveground carbon accumulation of 7.1 Mg C/ha (or 0.89 Mg C·ha-1 ·yr-1 ) during this period. Long-term AGC accumulation rate in Costa Rica was almost twice as fast as at our site in French Guiana. This may reflect higher fertility of Central American forest communities or a better adaptation of the forest tree community to intense and frequent disturbances. This finding may have important consequences for scaling-up carbon uptake estimates to continental scales.


Assuntos
Carbono/análise , Florestas , Teorema de Bayes , Biomassa , Costa Rica , Guiana Francesa
6.
Sci Rep ; 8(1): 6125, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651004

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

7.
Sci Rep ; 8(1): 3872, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497098

RESUMO

Disturbances control rainforest dynamics, and, according to the intermediate disturbance hypothesis (IDH), disturbance regime is a key driver of local diversity. Variations in disturbance regimes and their consequences on regional diversity at broad spatiotemporal scales are still poorly understood. Using multidisciplinary large-scale inventories and LiDAR acquisitions, we developed a robust indicator of disturbance regimes based on the frequency of a few early successional and widely distributed pioneer species. We demonstrate at the landscape scale that tree-species diversity and disturbance regimes vary with climate and relief. Significant relationships between the disturbance indicator, tree-species diversity and soil phosphorus content agree with the hypothesis that rainforest diversity is controlled both by disturbance regimes and long-term ecosystem stability. These effects explain the broad-scale patterns of floristic diversity observed between landscapes. In fact, species-rich forests in highlands, which have benefited from long-term stability combined with a moderate and regular regime of local disturbances, contrast with less diversified forests on recently shaped lowlands, which have undergone more recent changes and irregular dynamics. These results suggest that taking the current disturbance regime into account and including geomorphological stratifications in climate-vegetation models may be an effective way to improve the prediction of changes in species diversity under climate change.


Assuntos
Biodiversidade , Árvores/crescimento & desenvolvimento , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Florestas , Guiana , Modelos Biológicos , Floresta Úmida , Estações do Ano , Solo , Fatores de Tempo , Clima Tropical
8.
Ann Bot ; 118(5): 983-996, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27489160

RESUMO

Background and Aims Morphological variation in light-foraging strategies potentially plays important roles in efficient light utilization and carbon assimilation in spatially and temporally heterogeneous environments such as tropical moist forest understorey. By considering a suite of morphological traits at various hierarchical scales, we examined the functional significance of crown shape diversity and plasticity in response to canopy openness. Methods We conducted a field comparative study in French Guiana among tree saplings of 14 co-occurring species differing in light-niche optimum and breadth. Each leaf, axis or crown functional trait was characterized by a median value and a degree of plasticity expressed under contrasting light regimes. Key Results We found divergent patterns between shade-tolerant and heliophilic species on the one hand and between shade and sun plants on the other. Across species, multiple regression analysis showed that relative crown depth was positively correlated with leaf lifespan and not correlated with crown vertical growth rate. Within species displaying a reduction in crown depth in the shade, we observed that crown depth was limited by reduced crown vertical growth rate and not by accelerated leaf or branch shedding. In addition, the study provides contrasting examples of morphological multilevel plastic responses, which allow the maintenance of efficient foliage and enable effective whole-plant light capture in shaded conditions under a moderate vertical light gradient. Conclusions This result suggests that plastic adjustment of relative crown depth does not reflect a strategy maximizing light capture efficiency. Integrating and scaling-up leaf-level dynamics to shoot- and crown-level helps to interpret in functional and adaptive terms inter- and intraspecific patterns of crown traits and to better understand the mechanism of shade tolerance.

9.
Oecologia ; 175(2): 439-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615493

RESUMO

Airborne laser scanning provides continuous coverage mapping of forest canopy height and thereby is a powerful tool to scale-up above-ground biomass (AGB) estimates from stand to landscape. A critical first step is the selection of the plot variables which can be related to light detection and ranging (LiDAR) statistics. A universal approach was previously proposed which combines local and regional estimates of basal area (BA) and wood density with LiDAR-derived canopy height to map carbon at a regional scale (Asner et al. in Oecologia 168:1147-1160, 2012). Here we explore the contribution of stem diameter distribution, specific wood density and height-diameter (H-D) allometry to forest stand AGB and propose an alternative model. By applying the new model to a large tropical forest data set we show that an appropriate choice of input variables is essential to minimize prediction error of stand AGB which will propagate at larger scale. Stem number (N) and average stem cross-sectional area should be used instead of BA when scaling from tree to plot. Stand quadratic mean diameter above the census threshold diameter size should be preferred over stand mean diameter as it reduces the prediction error of stand AGB by a factor of ten. Wood density should be weighted by stem volume per species instead of BA. LiDAR-derived statistics should prove useful for estimating local H-D allometries as well as mapping N and the mean quadratic diameter above 10 cm at the landscape level. Prior stratification into forest types is likely to improve both estimation procedures significantly and is considered the foremost current challenge.


Assuntos
Biomassa , Carbono/análise , Luz , Árvores , Estudos Transversais , Monitoramento Ambiental/métodos , Modelos Teóricos , Análise de Regressão , Clima Tropical , Madeira
10.
Ann Bot ; 97(2): 245-55, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16299004

RESUMO

BACKGROUND AND AIMS: The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. METHODS: Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months. RESULTS: All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate. CONCLUSIONS: Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.


Assuntos
Luz , Magnoliopsida/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Clima Tropical , Apocynaceae/crescimento & desenvolvimento , Apocynaceae/metabolismo , Biomassa , Bombacaceae/crescimento & desenvolvimento , Bombacaceae/metabolismo , Carbono/metabolismo , Euphorbiaceae/crescimento & desenvolvimento , Euphorbiaceae/metabolismo , Magnoliopsida/metabolismo , Meliaceae/crescimento & desenvolvimento , Meliaceae/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA