Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (204)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372353

RESUMO

Engineered cell therapies utilizing chimeric antigen receptor (CAR)-T cells have achieved remarkable effectiveness in individuals with hematological malignancies and are presently undergoing development for the treatment of diverse solid tumors. So far, the preliminary evaluation of novel CAR-T cell products has predominantly taken place in xenograft tumor models using immunodeficient mice. This approach is chosen to facilitate the successful engraftment of human CAR-T cells in the experimental setting. However, syngeneic mouse models, in which tumors and CAR-T cells are derived from the same mouse strain, allow evaluation of new CAR technologies in the context of a functional immune system and comprehensive tumor microenvironment (TME). The protocol described here aims to streamline the process of mouse CAR-T cell generation by presenting standardized methods for retroviral transduction and ex vivo T cell culture. The methods described in this protocol can be applied to other CAR constructs beyond the ones used in this study to enable routine evaluation of new CAR technologies in immune-competent systems.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Linfócitos T , Neoplasias/terapia , Microambiente Tumoral , Receptores de Antígenos de Linfócitos T/genética
2.
Science ; 382(6667): 211-218, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824640

RESUMO

A major challenge facing tumor-antigen targeting therapies such as chimeric antigen receptor (CAR)-T cells is the identification of suitable targets that are specifically and uniformly expressed on heterogeneous solid tumors. By contrast, certain species of bacteria selectively colonize immune-privileged tumor cores and can be engineered as antigen-independent platforms for therapeutic delivery. To bridge these approaches, we developed a platform of probiotic-guided CAR-T cells (ProCARs), in which tumor-colonizing probiotics release synthetic targets that label tumor tissue for CAR-mediated lysis in situ. This system demonstrated CAR-T cell activation and antigen-agnostic cell lysis that was safe and effective in multiple xenograft and syngeneic models of human and mouse cancers. We further engineered multifunctional probiotics that co-release chemokines to enhance CAR-T cell recruitment and therapeutic response.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Escherichia coli , Imunoterapia Adotiva , Probióticos , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Imunoterapia Adotiva/métodos , Ativação Linfocitária , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Probióticos/uso terapêutico , Antígenos de Neoplasias/imunologia , Escherichia coli/genética , Escherichia coli/imunologia , Engenharia Celular , Neoplasias da Mama/terapia , Neoplasias Colorretais/terapia
3.
Sci Adv ; 9(10): eadc9436, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36888717

RESUMO

Tumors use multiple mechanisms to actively exclude immune cells involved in antitumor immunity. Strategies to overcome these exclusion signals remain limited due to an inability to target therapeutics specifically to the tumor. Synthetic biology enables engineering of cells and microbes for tumor-localized delivery of therapeutic candidates previously unavailable using conventional systemic administration techniques. Here, we engineer bacteria to intratumorally release chemokines to attract adaptive immune cells into the tumor environment. Bacteria expressing an activating mutant of the human chemokine CXCL16 (hCXCL16K42A) offer therapeutic benefit in multiple mouse tumor models, an effect mediated via recruitment of CD8+ T cells. Furthermore, we target the presentation of tumor-derived antigens by dendritic cells, using a second engineered bacterial strain expressing CCL20. This led to type 1 conventional dendritic cell recruitment and synergized with hCXCL16K42A-induced T cell recruitment to provide additional therapeutic benefit. In summary, we engineer bacteria to recruit and activate innate and adaptive antitumor immune responses, offering a new cancer immunotherapy strategy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Camundongos , Humanos , Neoplasias/genética , Neoplasias/terapia , Imunoterapia/métodos , Antígenos de Neoplasias , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA