Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 147(1): 98, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861157

RESUMO

Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Feminino , Masculino , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido Glutâmico/metabolismo , Núcleos Anteriores do Tálamo/metabolismo , Núcleos Anteriores do Tálamo/patologia , Calbindina 2/metabolismo , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia
3.
Nat Commun ; 14(1): 6159, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816713

RESUMO

Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval.


Assuntos
Hipocampo , Neurônios , Hipocampo/fisiologia , Neurônios/metabolismo , Córtex Entorrinal/fisiologia , Ritmo Teta/fisiologia , Parvalbuminas/metabolismo , Potenciais de Ação/fisiologia , Região CA1 Hipocampal/fisiologia
4.
Cell Rep ; 41(7): 111646, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384116

RESUMO

Intracellular aggregation of hyperphosphorylated Tau (pTau) in the brain is associated with cognitive and motor impairments, and ultimately neurodegeneration. We investigate how human pTau affects cells and network activity in the hippocampal formation of the THY-Tau22 tauopathy model mice in vivo. We find that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to neurodegeneration, and we establish that pTau spreads to oligodendrocytes. During goal-directed virtual navigation in aged transgenic mice, we detect fewer high-firing prosubicular pyramidal cells, but the firing population retains its coupling to theta oscillations. Analysis of network oscillations and firing patterns of pyramidal and GABAergic neurons recorded in head-fixed and freely moving mice suggests preserved neuronal coordination. In spatial memory tests, transgenic mice have reduced short-term familiarity, but spatial working and reference memory are surprisingly normal. We hypothesize that unimpaired subcortical network mechanisms maintain cortical neuronal coordination, counteracting the widespread pTau aggregation, loss of high-firing cells, and neurodegeneration.


Assuntos
Células Piramidais , Proteínas tau , Humanos , Camundongos , Animais , Idoso , Células Piramidais/fisiologia , Neurônios , Camundongos Transgênicos , Oligodendroglia , Envelhecimento
5.
Nat Neurosci ; 24(3): 401-411, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33619404

RESUMO

Pyramidal cells and GABAergic interneurons fire together in balanced cortical networks. In contrast to this general rule, we describe a distinct neuron type in mice and rats whose spiking activity is anti-correlated with all principal cells and interneurons in all brain states but, most prevalently, during the down state of non-REM (NREM) sleep. We identify these down state-active (DSA) neurons as deep-layer neocortical neurogliaform cells that express ID2 and Nkx2.1 and are weakly immunoreactive to neuronal nitric oxide synthase. DSA neurons are weakly excited by deep-layer pyramidal cells and strongly inhibited by several other GABAergic cell types. Spiking of DSA neurons modified the sequential firing order of other neurons at down-up transitions. Optogenetic activation of ID2+Nkx2.1+ interneurons in the posterior parietal cortex during NREM sleep, but not during waking, interfered with consolidation of cue discrimination memory. Despite their sparsity, DSA neurons perform critical physiological functions.


Assuntos
Potenciais de Ação/fisiologia , Proteína 2 Inibidora de Diferenciação/metabolismo , Interneurônios/fisiologia , Lobo Parietal/fisiologia , Células Piramidais/fisiologia , Sono/fisiologia , Fator Nuclear 1 de Tireoide/metabolismo , Animais , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Optogenética , Lobo Parietal/metabolismo
6.
J Neurosci ; 39(23): 4527-4549, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926750

RESUMO

The medial septum implements cortical theta oscillations, a 5-12 Hz rhythm associated with locomotion and paradoxical sleep reflecting synchronization of neuronal assemblies such as place cell sequence coding. Highly rhythmic burst-firing parvalbumin-positive GABAergic medial septal neurons are strongly coupled to theta oscillations and target cortical GABAergic interneurons, contributing to coordination within one or several cortical regions. However, a large population of medial septal neurons of unidentified neurotransmitter phenotype and with unknown axonal target areas fire with a low degree of rhythmicity. We investigated whether low-rhythmic-firing neurons (LRNs) innervated similar or different cortical regions to high-rhythmic-firing neurons (HRNs) and assessed their temporal dynamics in awake male mice. The majority of LRNs were GABAergic and parvalbumin-immunonegative, some expressing calbindin; they innervated interneurons mostly in the dentate gyrus (DG) and CA3. Individual LRNs showed several distinct firing patterns during immobility and locomotion, forming a parallel inhibitory stream for the modulation of cortical interneurons. Despite their fluctuating firing rates, the preferred firing phase of LRNs during theta oscillations matched the highest firing probability phase of principal cells in the DG and CA3. In addition, as a population, LRNs were markedly suppressed during hippocampal sharp-wave ripples, had a low burst incidence, and several of them did not fire on all theta cycles. Therefore, CA3 receives GABAergic input from both HRNs and LRNs, but the DG receives mainly LRN input. We propose that distinct GABAergic LRNs contribute to changing the excitability of the DG and CA3 during memory discrimination via transient disinhibition of principal cells.SIGNIFICANCE STATEMENT For the encoding and recall of episodic memories, nerve cells in the cerebral cortex are activated in precisely timed sequences. Rhythmicity facilitates the coordination of neuronal activity and these rhythms are detected as oscillations of different frequencies such as 5-12 Hz theta oscillations. Degradation of these rhythms, such as through neurodegeneration, causes memory deficits. The medial septum, a part of the basal forebrain that innervates the hippocampal formation, contains high- and low-rhythmic-firing neurons (HRNs and LRNs, respectively), which may contribute differentially to cortical neuronal coordination. We discovered that GABAergic LRNs preferentially innervate the dentate gyrus and the CA3 area of the hippocampus, regions important for episodic memory. These neurons act in parallel with the HRNs mostly via transient inhibition of inhibitory neurons.


Assuntos
Região CA3 Hipocampal/fisiologia , Giro Denteado/fisiologia , Neurônios GABAérgicos/fisiologia , Vias Neurais/fisiologia , Septo do Cérebro/citologia , Potenciais de Ação , Animais , Região CA3 Hipocampal/citologia , Calbindinas/análise , Giro Denteado/citologia , Neurônios GABAérgicos/química , Masculino , Memória Episódica , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/análise , Parvalbuminas/análise , Corrida , Septo do Cérebro/fisiologia , Ritmo Teta/fisiologia , Vigília
7.
Brain Struct Funct ; 223(5): 2409-2432, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29500537

RESUMO

Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.


Assuntos
Neurônios GABAérgicos/fisiologia , Hipocampo/citologia , Septo do Cérebro/citologia , Lobo Temporal/citologia , Ritmo Teta/fisiologia , Potenciais de Ação/fisiologia , Animais , Proteínas de Transporte/metabolismo , Processamento de Imagem Assistida por Computador , Masculino , Proteínas de Membrana/metabolismo , Microscopia Confocal , Rede Nervosa/fisiologia , Vias Neurais , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
8.
Hippocampus ; 27(4): 359-377, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27997999

RESUMO

Long-range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O-LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin-labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave-ripples, most projection cells, including a novel SOM+ GABAergic back-projecting cell, increased their activity similar to bistratified cells, but unlike O-LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O-LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior- and network state-dependent binding of neuronal assemblies amongst functionally-related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.


Assuntos
Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Atividade Motora/fisiologia , Sono/fisiologia , Potenciais de Ação/fisiologia , Animais , Biotina/análogos & derivados , Eletrodos Implantados , Masculino , Ratos Sprague-Dawley , Processamento de Sinais Assistido por Computador , Ritmo Teta/fisiologia , Vigília/fisiologia
10.
PLoS One ; 11(2): e0147738, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845435

RESUMO

Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information ("Quadratic Mutual Information"). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells' response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types.


Assuntos
Células Ganglionares da Retina/fisiologia , Visão Ocular , Campos Visuais , Animais , Biotina/análogos & derivados , Expressão Gênica , Genes Reporter , Camundongos , Camundongos Transgênicos , Parvalbuminas/genética , Estimulação Luminosa , Retina
11.
J Neurosci ; 35(48): 15812-26, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26631464

RESUMO

Temporal coordination of neuronal assemblies among cortical areas is essential for behavioral performance. GABAergic projections from the medial septum and diagonal band complex exclusively innervate GABAergic interneurons in the rat hippocampus, contributing to the coordination of neuronal activity, including the generation of theta oscillations. Much less is known about the synaptic target neurons outside the hippocampus. To reveal the contribution of synaptic circuits involving the medial septum of mice, we have identified postsynaptic cortical neurons in wild-type and parvalbumin-Cre knock-in mice. Anterograde axonal tracing from the septum revealed extensive innervation of the hippocampus as well as the subiculum, presubiculum, parasubiculum, the medial and lateral entorhinal cortices, and the retrosplenial cortex. In all examined cortical regions, many septal GABAergic boutons were in close apposition to somata or dendrites immunopositive for interneuron cell-type molecular markers, such as parvalbumin, calbindin, calretinin, N-terminal EF-hand calcium-binding protein 1, cholecystokinin, reelin, or a combination of these molecules. Electron microscopic observations revealed septal boutons forming axosomatic or axodendritic type II synapses. In the CA1 region of hippocampus, septal GABAergic projections exclusively targeted interneurons. In the retrosplenial cortex, 93% of identified postsynaptic targets belonged to interneurons and the rest to pyramidal cells. These results suggest that the GABAergic innervation from the medial septum and diagonal band complex contributes to temporal coordination of neuronal activity via several types of cortical GABAergic interneurons in both hippocampal and extrahippocampal cortices. Oscillatory septal neuronal firing at delta, theta, and gamma frequencies may phase interneuron activity.


Assuntos
Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleos Septais/fisiologia , Sinapses/fisiologia , Animais , Corantes Fluorescentes/metabolismo , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Parvalbuminas/genética , Parvalbuminas/metabolismo , Fito-Hemaglutininas/metabolismo , Proteína Reelina , Núcleos Septais/citologia , Sinapses/ultraestrutura , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores
12.
Nat Neurosci ; 18(9): 1281-1290, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214372

RESUMO

Sharp-wave ripples represent a prominent synchronous activity pattern in the mammalian hippocampus during sleep and immobility. GABAergic interneuronal types are silenced or fire during these events, but the mechanism of pyramidal cell (PC) participation remains elusive. We found opposite membrane polarization of deep (closer to stratum oriens) and superficial (closer to stratum radiatum) rat CA1 PCs during sharp-wave ripples. Using sharp and multi-site recordings in combination with neurochemical profiling, we observed a predominant inhibitory drive of deep calbindin (CB)-immunonegative PCs that contrasts with a prominent depolarization of superficial CB-immunopositive PCs. Biased contribution of perisomatic GABAergic inputs, together with suppression of CA2 PCs, may explain the selection of CA1 PCs during sharp-wave ripples. A deep-superficial gradient interacted with behavioral and spatial effects to determine cell participation during sleep and awake sharp-wave ripples in freely moving rats. Thus, the firing dynamics of hippocampal PCs are exquisitely controlled at subcellular and microcircuit levels in a cell type-selective manner.


Assuntos
Potenciais de Ação/fisiologia , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Células Piramidais/fisiologia , Animais , Estimulação Elétrica/métodos , Feminino , Masculino , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Ratos , Ratos Wistar
13.
Neuron ; 82(4): 872-86, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24794095

RESUMO

Neuropeptides acting on pre- and postsynaptic receptors are coreleased with GABA by interneurons including bistratified and O-LM cells, both expressing somatostatin but innervating segregated dendritic domains of pyramidal cells. Neuropeptide release requires high-frequency action potentials, but the firing patterns of most peptide/GABA-releasing interneurons during behavior are unknown. We show that behavioral and network states differentiate the activities of bistratified and O-LM cells in freely moving rats. Bistratified cells fire at higher rates during sleep than O-LM cells and, unlike O-LM cells, strongly increase spiking during sharp wave-associated ripples (SWRs). In contrast, O-LM interneurons decrease firing during sleep relative to awake states and are mostly inhibited during SWRs. During movement, both cell types fire cooperatively at the troughs of theta oscillations but with different frequencies. Somatostatin and GABA are differentially released to distinct dendritic zones of CA1 pyramidal cells during sleep and wakefulness to coordinate segregated glutamatergic inputs from entorhinal cortex and CA3.


Assuntos
Hipocampo/citologia , Interneurônios/fisiologia , Movimento/fisiologia , Sono/fisiologia , Somatostatina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Vigília
14.
Philos Trans R Soc Lond B Biol Sci ; 369(1635): 20120518, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24366131

RESUMO

The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states.


Assuntos
Axônios/fisiologia , Relógios Biológicos/fisiologia , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Células Piramidais/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Vias Neurais/fisiologia , Parvalbuminas/fisiologia , Ratos
15.
Nat Neurosci ; 16(12): 1802-1811, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24141313

RESUMO

Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation.


Assuntos
Axônios/fisiologia , Região CA3 Hipocampal/citologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Proteínas de Arabidopsis/metabolismo , Axônios/ultraestrutura , Biotina/análogos & derivados , Biotina/metabolismo , Ondas Encefálicas/fisiologia , Dendritos/metabolismo , Dendritos/ultraestrutura , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/ultraestrutura , Vias Neurais/fisiologia , Parvalbuminas/metabolismo , Periodicidade , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
16.
Neuron ; 78(2): 325-38, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23541902

RESUMO

VIDEO ABSTRACT: Gradual changes in the sensory environment can lead to abrupt changes in brain computations and perception. However, mechanistic understanding of the mediating microcircuits is missing. By sliding through light levels from starlight to daylight, we identify retinal ganglion cell types in the mouse that abruptly and reversibly switch the weighting of center and surround interactions in their receptive field around cone threshold. Two-photon-targeted recordings and genetic and viral tracing experiments revealed that the circuit element responsible for the switch is a large inhibitory neuron that provides direct inhibition to ganglion cells. Our experiments suggest that weak excitatory input via electrical synapses together with the spiking threshold in inhibitory cells act as a switch. We also reveal a switch-like component in the spatial integration properties of human vision at cone threshold. This work demonstrates that circuits in the retina can quickly and reversibly switch between two distinct states, implementing distinct perceptual regimes at different light levels.


Assuntos
Iluminação , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Colina O-Acetiltransferase/metabolismo , Conexinas/genética , Herpesvirus Humano 1/metabolismo , Humanos , Imageamento Tridimensional , Camundongos , Camundongos Transgênicos , Rede Nervosa/fisiologia , Inibição Neural/genética , Inibição Neural/fisiologia , Parvalbuminas/deficiência , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Estimulação Luminosa , Retina/citologia , Células Ganglionares da Retina/metabolismo , Proteína delta-2 de Junções Comunicantes
17.
J Biol Chem ; 279(48): 49948-55, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15385550

RESUMO

An 18-bp enhancer controls cell-specific expression of the calcitonin/calcitonin gene-related peptide gene. The enhancer is bound by a heterodimer of the bHLH-Zip protein USF-1 and -2 and a cell-specific factor from thyroid C cell lines. In this report we have identified the cell-specific factor as the forkhead protein Foxa2 (previously HNF-3beta). Binding of Foxa2 to the 18-bp enhancer was demonstrated using electrophoretic mobility shift assays. The cell-specific DNA-protein complex was selectively competed by a series of Foxa2 DNA binding sites, and the addition of Foxa2 antiserum supershifted the complex. Likewise, a complex similar to that seen with extracts from thyroid C cell lines was generated using an extract from heterologous cells expressing recombinant Foxa2. Interestingly, overexpression of Foxa2 activated the 18-bp enhancer in heterologous cells but only in the presence of the adjacent helix-loop-helix motif. Likewise, coexpression of USF proteins with Foxa2 yielded greater activation than by Foxa2 alone. Unexpectedly, Foxa2 overexpression repressed activity in the CA77 thyroid C cell line, suggesting that Foxa2 may interact with additional cofactors. The stimulatory role of Foxa2 at the calcitonin/calcitonin gene-related peptide gene enhancer was confirmed by short interfering RNA-mediated knockdown of Foxa2. As seen with Foxa2 overexpression, the effect of Foxa2 knockdown also required the adjacent helix-loop-helix motif. These results provide the first evidence for combinatorial control of gene expression by bHLH-Zip and forkhead proteins.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/genética , Calcitonina/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Regulação da Expressão Gênica/fisiologia , Fator 3-beta Nuclear de Hepatócito , Humanos , Ratos , Fatores Estimuladores Upstream
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA