Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1412927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974658

RESUMO

Introduction: CRISPR gene editing, while highly efficient in creating desired mutations, also has the potential to cause off-target mutations. This risk is especially high in clonally propagated plants, where editing reagents may remain in the genome for long periods of time or in perpetuity. We studied a diverse population of Populus and Eucalyptus trees that had CRISPR/Cas9-containing transgenes that targeted one or two types of floral development genes, homologs of LEAFY and AGAMOUS. Methods: Using a targeted sequence approach, we studied approximately 20,000 genomic sites with degenerate sequence homology of up to five base pairs relative to guide RNA (gRNA) target sites. We analyzed those sites in 96 individual tree samples that represented 37 independent insertion events containing one or multiples of six unique gRNAs. Results: We found low rates of off-target mutations, with rates of 1.2 × 10-9 in poplar and 3.1 × 10-10 in eucalypts, respectively, comparable to that expected due to sexual reproduction. The rates of mutation were highly idiosyncratic among sites and not predicted by sequence similarity to the target sites; a subset of two gRNAs showed off-target editing of four unique genomic sites with up to five mismatches relative to the true target sites, reaching fixation in some gene insertion events and clonal ramets. The location of off-target mutations relative to the PAM site were essentially identical to that seen with on-target CRISPR mutations. Discussion: The low rates observed support many other studies in plants that suggest that the rates of off-target mutagenesis from CRISPR/Cas9 transgenes are negligible; our study extends this conclusion to trees and other long-lived plants where CRISPR/Cas9 transgenes were present in the genome for approximately four years.

2.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325326

RESUMO

European hazelnut (Corylus avellana L.) is an important tree nut crop. Hazelnut production in North America is currently limited in scalability due to Anisogramma anomala, a fungal pathogen that causes Eastern Filbert Blight (EFB) disease in hazelnut. Successful deployment of EFB resistant cultivars has been limited to the state of Oregon, where the breeding program at Oregon State University (OSU) has released cultivars with a dominant allele at a single resistance locus identified by classical breeding, linkage mapping, and molecular markers. C. avellana cultivar "Jefferson" is resistant to the predominant EFB biotype in Oregon and has been selected by the OSU breeding program as a model for hazelnut genetic and genomic research. Here, we present a near complete, haplotype-resolved chromosome-level hazelnut genome assembly for "Jefferson". This new assembly is a significant improvement over a previously published genome draft. Analysis of genomic regions linked to EFB resistance and self-incompatibility confirmed haplotype splitting and identified new gene candidates that are essential for downstream molecular marker development, thereby facilitating breeding efforts.


Assuntos
Corylus , Resistência à Doença , Haplótipos , Doenças das Plantas , Corylus/genética , Corylus/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Anotação de Sequência Molecular , Genoma de Planta , Cromossomos de Plantas/genética , Mapeamento Cromossômico
3.
Front Plant Sci ; 14: 1125065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123862

RESUMO

Above-ground material of members of the mint family is commercially distilled to extract essential oils, which are then formulated into a myriad of consumer products. Most of the research aimed at characterizing the processes involved in the formation of terpenoid oil constituents has focused on leaves. We now demonstrate, by investigating three mint species, peppermint (Mentha Ë£ piperita L.), spearmint (Mentha spicata L.) and horsemint (Mentha longifolia (L.) Huds.; accessions CMEN 585 and CMEN 584), that other organs - namely stems, rhizomes and roots - also emit volatiles and that the terpenoid volatile composition of these organs can vary substantially from that of leaves, supporting the notion that substantial, currently underappreciated, chemical diversity exists. Differences in volatile quantities released by plants whose roots had been dipped in a Verticillium dahliae-spore suspension (experimental) or dipped in water (controls) were evident: increases of some volatiles in the root headspace of mint species that are susceptible to Verticillium wilt disease (peppermint and M. longifolia CMEN 584) were detected, while the quantities of certain volatiles decreased in rhizomes of species that show resistance to the disease (spearmint and M. longifolia CMEN 585). To address the genetic and biochemical basis underlying chemical diversity, we took advantage of the newly sequenced M. longifolia CMEN 585 genome to identify candidate genes putatively coding for monoterpene synthases (MTSs), the enzymes that catalyze the first committed step in the biosynthesis of monoterpenoid volatiles. The functions of these genes were established by heterologous expression in Escherichia coli, purification of the corresponding recombinant proteins, and enzyme assays, thereby establishing the existence of MTSs with activities to convert a common substrate, geranyl diphosphate, to (+)-α-terpineol, 1,8-cineole, γ-terpinene, and (-)-bornyl diphosphate, but were not active with other potential substrates. In conjunction with previously described MTSs that catalyze the formation of (-)-ß-pinene and (-)-limonene, the product profiles of the MTSs identified here can explain the generation of all major monoterpene skeletons represented in the volatiles released by different mint organs.

4.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35551385

RESUMO

Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.


Assuntos
Mentha , Óleos Voláteis , Verticillium , Cromossomos , Resistência à Doença/genética , Mentha/química , Mentha/genética , Mentha/metabolismo , Monoterpenos/análise , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Melhoramento Vegetal , Verticillium/genética
5.
Plants (Basel) ; 11(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35270144

RESUMO

Mentha longifolia is a wild mint species being used as a model to study the genetics of resistance to the fungal wilt pathogen Verticillium dahliae. We used high-throughput Illumina sequencing to study gene expression in response to V. dahliae inoculation in two M. longifolia USDA accessions with contrasting phenotypes: wilt-resistant CMEN 585 and wilt-susceptible CMEN 584. Roots and stems were sampled at two early post-inoculation time points, four hours and twenty-four hours, and again at ten days and twenty days post-inoculation. Overall, many more genes were differentially-regulated in wilt-resistant CMEN 585 than in wilt-susceptible CMEN 584. The greatest numbers of differentially expressed genes were found in the roots of CMEN 585 at the early time points. Specific genes exhibiting early, strong upregulation in roots of CMEN 585 but not in CMEN 584 included homologs of known plant defense response genes as well as genes involved in monoterpene biosynthesis. These genes were also upregulated in stems at the later time points. This study provides a comprehensive view of transcription reprogramming in Verticillium wilt-resistant mint, which will be the basis for further study and for molecular marker development.

6.
Plants (Basel) ; 10(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803625

RESUMO

Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a worldwide disease of wheat that causes devastating crop losses. Resistant cultivars have been developed over the last 40 years that have significantly reduced the economic impact of the disease on growers, but in heavy infection years it is mostly controlled through the intensive application of fungicides. The Pacific Northwest of the United States has an ideal climate for stripe rust and has one of the most diverse race compositions in the country. This has resulted in many waves of epidemics that have overcome most of the resistance genes traditionally used in elite germplasm. The best way to prevent high yield losses, reduce production costs to growers, and reduce the heavy application of fungicides is to pyramid multiple stripe rust resistance genes into new cultivars. Using genotyping-by-sequencing, we identified 4662 high quality variant positions in a recombinant inbred line population of 196 individuals derived from a cross between Skiles, a highly resistant winter wheat cultivar, and Goetze, a moderately to highly susceptible winter wheat cultivar, both developed at Oregon State University. A subsequent genome wide association study identified two quantitative trait loci (QTL) on chromosomes 3B and 3D within the predicted locations of stripe rust resistance genes. Resistance QTL, when combined together, conferred high levels of stripe rust resistance above the level of Skiles in some locations, indicating that these QTL would be important additions to future breeding efforts of Pacific Northwest winter wheat cultivars.

7.
Genes (Basel) ; 12(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918244

RESUMO

Terpenoids are a wide variety of natural products and terpene synthase (TPS) plays a key role in the biosynthesis of terpenoids. Mentha plants are rich in essential oils, whose main components are terpenoids, and their biosynthetic pathways have been basically elucidated. However, there is a lack of systematic identification and study of TPS in Mentha plants. In this work, we genome-widely identified and analyzed the TPS gene family in Mentha longifolia, a model plant for functional genomic research in the genus Mentha. A total of 63 TPS genes were identified in the M. longifolia genome sequence assembly, which could be divided into six subfamilies. The TPS-b subfamily had the largest number of genes, which might be related to the abundant monoterpenoids in Mentha plants. The TPS-e subfamily had 18 members and showed a significant species-specific expansion compared with other sequenced Lamiaceae plant species. The 63 TPS genes could be mapped to nine scaffolds of the M. longifolia genome sequence assembly and the distribution of these genes is uneven. Tandem duplicates and fragment duplicates contributed greatly to the increase in the number of TPS genes in M. longifolia. The conserved motifs (RR(X)8W, NSE/DTE, RXR, and DDXXD) were analyzed in M. longifolia TPSs, and significant differentiation was found between different subfamilies. Adaptive evolution analysis showed that M. longifolia TPSs were subjected to purifying selection after the species-specific expansion, and some amino acid residues under positive selection were identified. Furthermore, we also cloned and analyzed the catalytic activity of a single terpene synthase, MlongTPS29, which belongs to the TPS-b subfamily. MlongTPS29 could encode a limonene synthase and catalyze the biosynthesis of limonene, an important precursor of essential oils from the genus Mentha. This study provides useful information for the biosynthesis of terpenoids in the genus Mentha.


Assuntos
Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Mentha/enzimologia , Análise de Sequência de DNA/métodos , Adaptação Biológica , Mapeamento Cromossômico/métodos , Evolução Molecular , Duplicação Gênica , Genoma de Planta , Limoneno/metabolismo , Mentha/genética , Mentha/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Seleção Genética
9.
Front Plant Sci ; 11: 1217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973823

RESUMO

Mentha is a strongly scented herb of the Lamiaceae (formerly Labiatae) and includes about 30 species and hybrid species that are distributed or introduced throughout the globe. These fragrant plants have been selected throughout millennia for use by humans as herbs, spices, and pharmaceutical needs. The distilling of essential oils from mint began in Japan and England but has become a significant industrial product for the US, China, India, and other countries. The US Department of Agriculture (USDA), Agricultural Research Service, National Clonal Germplasm Repository (NCGR) maintains a mint genebank in Corvallis, Oregon. This facility preserves and distributes about 450 clones representing 34 taxa, hybrid species, advanced breeder selections, and F1 hybrids. Mint crop wild relatives are included in this unique resource. The majority of mint accessions and hybrids in this collection were initially donated in the 1970s by the A.M. Todd Company, located in Kalamazoo, Michigan. Other representatives of diverse mint taxa and crop wild relatives have since been obtained from collaborators in Australia, New Zealand, Europe, and Vietnam. These mints have been evaluated for cytology, oil components, verticillium wilt resistance, and key morphological characters. Pressed voucher specimens have been prepared for morphological identity verification. An initial set of microsatellite markers has been developed to determine clonal identity and assess genetic diversity. Plant breeders at private and public institutions are using molecular analysis to determine identity and diversity of the USDA mint collection. Evaluation and characterization includes essential oil content, disease resistance, male sterility, and other traits for potential breeding use. These accessions can be a source for parental genes for enhancement efforts to produce hybrids, or for breeding new cultivars for agricultural production. Propagules of Mentha are available for distribution to international researchers as stem cuttings, rhizome cuttings, or seed, which can be requested through the GRIN-Global database of the US National Plant Germplasm System, subject to international treaty and quarantine regulations.

10.
Phytopathology ; 109(11): 1966-1974, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31246137

RESUMO

Verticillium wilt is the most important disease threatening the commercial production of mint grown for essential oil. An important long-term goal for mint breeders is the production of cultivars with resistance to Verticillium wilt. Before that can be accomplished, a better understanding of the genetic variation within and among populations of Verticillium dahliae is needed. We characterized the extent of phenotypic and genetic diversity present in contemporary and archival populations of V. dahliae from mint fields in Oregon and other production regions of the United States using genotyping by sequencing, PCR assays for mating type and pathogenic race, vegetative compatibility group (VCG) tests, and aggressiveness assays. We report that the population in the Pacific Northwest can be described as one common genetic group and four relatively rare genetic groups. Eighty-three percent of the isolates belonged to VCG2B, and all isolates possessed the MAT1-2 idiomorph and were characterized as pathogenic race 2. These results indicate low levels of genetic diversity and a negligible risk of sexual recombination in populations of this host-adapted pathogen population. Knowledge of the genetic structure of V. dahliae in the Pacific Northwest will inform breeders about the diversity of pathogenicity factors that may need to be considered in their breeding programs.


Assuntos
Variação Genética , Mentha , Verticillium , DNA Fúngico/genética , Genótipo , Mentha/microbiologia , Noroeste dos Estados Unidos , Oregon , Doenças das Plantas/microbiologia , Verticillium/genética
11.
Phytopathology ; 109(6): 1018-1028, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30714882

RESUMO

Stem rust (incited by Puccinia graminis f. sp. tritici) is a devastating disease of wheat and barley in many production areas. The widely virulent African P. graminis f. sp. tritici race TTKSK is of particular concern, because most cultivars are susceptible. To prepare for the possible arrival of race TTKSK in North America, we crossed a range of barley germplasm-representing different growth habits and end uses-with donors of stem rust resistance genes Rpg1 and rpg4/Rpg5. The former confers resistance to prevalent races of P. graminis f. sp. tritici in North America, and the latter confers resistance to TTKSK and other closely related races from Africa. We produced doubled haploids from these crosses and determined their allele type at the Rpg loci and haplotype at 7,864 single-nucleotide polymorphism loci. The doubled haploids were phenotyped for TTKSK resistance at the seedling stage. Integration of genotype and phenotype data revealed that (i) Rpg1 was not associated with TTKSK resistance, (ii) rpg4/Rpg5 was necessary but was not sufficient for resistance, and (iii) specific haplotypes at two quantitative trait loci were required for rpg4/Rpg5 to confer resistance to TTKSK. To confirm whether lines found resistant to TTKSK at the seedling resistance were also resistant at the adult plant stage, a subset of doubled haploids was evaluated in Kenya. Additionally, adult plant resistance to leaf rust and stripe rust (incited by Puccinia hordei and Puccinia striiformis f. sp. hordei, respectively) was also assessed on the doubled haploids in field trials at three locations in the United States over a 2-year period. Doubled haploids were identified with adult plant resistance to all three rusts, and this germplasm is available to the research and breeding communities.


Assuntos
Basidiomycota , Hordeum , Doenças das Plantas/microbiologia , Resistência à Doença , Quênia , América do Norte
12.
Gigascience ; 7(8)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107523

RESUMO

Background: The fragmented nature of most draft plant genomes has hindered downstream gene discovery, trait mapping for breeding, and other functional genomics applications. There is a pressing need to improve or finish draft plant genome assemblies. Findings: Here, we present a chromosome-scale assembly of the black raspberry genome using single-molecule real-time Pacific Biosciences sequencing and high-throughput chromatin conformation capture (Hi-C) genome scaffolding. The updated V3 assembly has a contig N50 of 5.1 Mb, representing an ∼200-fold improvement over the previous Illumina-based version. Each of the 235 contigs was anchored and oriented into seven chromosomes, correcting several major misassemblies. Black raspberry V3 contains 47 Mb of new sequences including large pericentromeric regions and thousands of previously unannotated protein-coding genes. Among the new genes are hundreds of expanded tandem gene arrays that were collapsed in the Illumina-based assembly. Detailed comparative genomics with the high-quality V4 woodland strawberry genome (Fragaria vesca) revealed near-perfect 1:1 synteny with dramatic divergence in tandem gene array composition. Lineage-specific tandem gene arrays in black raspberry are related to agronomic traits such as disease resistance and secondary metabolite biosynthesis. Conclusions: The improved resolution of tandem gene arrays highlights the need to reassemble these highly complex and biologically important regions in draft plant genomes. The updated, high-quality black raspberry reference genome will be useful for comparative genomics across the horticulturally important Rosaceae family and enable the development of marker assisted breeding in Rubus.


Assuntos
Genoma de Planta , Rubus/genética , Análise de Sequência de DNA , Cromossomos de Plantas , Genômica
13.
Hortic Res ; 5: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423238

RESUMO

Black raspberry (Rubus occidentalis L.) is a niche fruit crop valued for its flavor and potential health benefits. The improvement of fruit and cane characteristics via molecular breeding technologies has been hindered by the lack of a high-quality reference genome. The recently released draft genome for black raspberry (ORUS 4115-3) lacks assembly of scaffolds to chromosome scale. We used high-throughput chromatin conformation capture (Hi-C) and Proximity-Guided Assembly (PGA) to cluster and order 9650 out of 11,936 contigs of this draft genome assembly into seven pseudo-chromosomes. The seven pseudo-chromosomes cover ~97.2% of the total contig length (~223.8 Mb). Locating existing genetic markers on the physical map resolved multiple discrepancies in marker order on the genetic map. Centromeric regions were inferred from recombination frequencies of genetic markers, alignment of 303 bp centromeric sequence with the PGA, and heat map showing the physical contact matrix over the entire genome. We demonstrate a high degree of synteny between each of the seven chromosomes of black raspberry and a high-quality reference genome for strawberry (Fragaria vesca L.) assembled using only PacBio long-read sequences. We conclude that PGA is a cost-effective and rapid method of generating chromosome-scale assemblies from Illumina short-read sequencing data.

14.
PeerJ ; 5: e3731, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28875078

RESUMO

Genotyping-by-sequencing (GBS) was used to survey genome-wide single-nucleotide polymorphisms (SNPs) in three biparental strawberry (Fragaria × ananassa) populations with the goal of evaluating this technique in a species with a complex octoploid genome. GBS sequence data were aligned to the F. vesca 'Fvb' reference genome in order to call SNPs. Numbers of polymorphic SNPs per population ranged from 1,163 to 3,190. Linkage maps consisting of 30-65 linkage groups were produced from the SNP sets derived from each parent. The linkage groups covered 99% of the Fvb reference genome, with three to seven linkage groups from a given parent aligned to any particular chromosome. A phylogenetic analysis performed using the POLiMAPS pipeline revealed linkage groups that were most similar to ancestral species F. vesca for each chromosome. Linkage groups that were most similar to a second ancestral species, F. iinumae, were only resolved for Fvb 4. The quantity of missing data and heterogeneity in genome coverage inherent in GBS complicated the analysis, but POLiMAPS resolved F. × ananassa chromosomal regions derived from diploid ancestor F. vesca.

15.
Mol Plant ; 10(2): 323-339, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-27867107

RESUMO

The genus Mentha encompasses mint species cultivated for their essential oils, which are formulated into a vast array of consumer products. Desirable oil characteristics and resistance to the fungal disease Verticillium wilt are top priorities for the mint industry. However, cultivated mints have complex polyploid genomes and are sterile. Breeding efforts, therefore, require the development of genomic resources for fertile mint species. Here, we present draft de novo genome and plastome assemblies for a wilt-resistant South African accession of Mentha longifolia (L.) Huds., a diploid species ancestral to cultivated peppermint and spearmint. The 353 Mb genome contains 35 597 predicted protein-coding genes, including 292 disease resistance gene homologs, and nine genes determining essential oil characteristics. A genetic linkage map ordered 1397 genome scaffolds on 12 pseudochromosomes. More than two million simple sequence repeats were identified, which will facilitate molecular marker development. The M. longifolia genome is a valuable resource for both metabolic engineering and molecular breeding. This is exemplified by employing the genome sequence to clone and functionally characterize the promoters in a peppermint cultivar, and demonstrating the utility of a glandular trichome-specific promoter to increase expression of a biosynthetic gene, thereby modulating essential oil composition.


Assuntos
Genoma de Planta , Mentha/genética , Sequência de Bases , Melhoramento Vegetal , Doenças das Plantas/genética , Regiões Promotoras Genéticas
16.
Plant J ; 87(6): 535-47, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27228578

RESUMO

Black raspberry (Rubus occidentalis) is an important specialty fruit crop in the US Pacific Northwest that can hybridize with the globally commercialized red raspberry (R. idaeus). Here we report a 243 Mb draft genome of black raspberry that will serve as a useful reference for the Rosaceae and Rubus fruit crops (raspberry, blackberry, and their hybrids). The black raspberry genome is largely collinear to the diploid woodland strawberry (Fragaria vesca) with a conserved karyotype and few notable structural rearrangements. Centromeric satellite repeats are widely dispersed across the black raspberry genome, in contrast to the tight association with the centromere observed in most plants. Among the 28 005 predicted protein-coding genes, we identified 290 very recent small-scale gene duplicates enriched for sugar metabolism, fruit development, and anthocyanin related genes which may be related to key agronomic traits during black raspberry domestication. This contrasts patterns of recent duplications in the wild woodland strawberry F. vesca, which show no patterns of enrichment, suggesting gene duplications contributed to domestication traits. Expression profiles from a fruit ripening series and roots exposed to Verticillium dahliae shed insight into fruit development and disease response, respectively. The resources presented here will expedite the development of improved black and red raspberry, blackberry and other Rubus cultivars.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Rubus/genética , Rubus/microbiologia , Centrômero/genética , Mapeamento Cromossômico , Resistência à Doença/genética , Frutas/genética , Frutas/fisiologia , Duplicação Gênica , Genômica/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Rosaceae/genética , Análise de Sequência de DNA , Verticillium/patogenicidade
17.
Theor Appl Genet ; 128(8): 1631-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26037086

RESUMO

KEY MESSAGE: We have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance. Black raspberry (Rubus occidentalis L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid Amphorophora agathonica Hottes, which is a vector for the Raspberry mosaic virus complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3-4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F1 population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. Our linkage map of seven linkage groups representing the seven haploid chromosomes of black raspberry consists of 274 markers on the maternal map and 292 markers on the paternal map including a morphological locus for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other Rubus species, and enhancing the black raspberry genome assembly.


Assuntos
Afídeos , Mapeamento Cromossômico , Ligação Genética , Rubus/genética , Animais , Cruzamento , Cromossomos de Plantas , DNA de Plantas/genética , Marcadores Genéticos , Genética Populacional , Herbivoria , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único
18.
New Phytol ; 206(4): 1406-22, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25353719

RESUMO

As a step toward functional annotation of genes required for floral initiation and development within the Eucalyptus genome, we used short read sequencing to analyze transcriptomes of floral buds from early and late developmental stages, and compared these with transcriptomes of diverse vegetative tissues, including leaves, roots, and stems. A subset of 4807 genes (13% of protein-coding genes) were differentially expressed between floral buds of either stage and vegetative tissues. A similar proportion of genes were differentially expressed among all tissues. A total of 479 genes were differentially expressed between early and late stages of floral development. Gene function enrichment identified 158 gene ontology classes that were overrepresented in floral tissues, including 'pollen development' and 'aromatic compound biosynthetic process'. At least 40 floral-dominant genes lacked functional annotations and thus may be novel floral transcripts. We analyzed several genes and gene families in depth, including 49 putative biomarkers of floral development, the MADS-box transcription factors, 'S-domain'-receptor-like kinases, and selected gene family members with phosphatidylethanolamine-binding protein domains. Expanded MADS-box gene subfamilies in Eucalyptus grandis included SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), SEPALLATA (SEP) and SHORT VEGETATIVE PHASE (SVP) Arabidopsis thaliana homologs. These data provide a rich resource for functional and evolutionary analysis of genes controlling eucalypt floral development, and new tools for breeding and biotechnology.


Assuntos
Eucalyptus/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA
19.
Ecol Evol ; 3(2): 399-415, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23467802

RESUMO

Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular "memory". Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change.

20.
BMC Genomics ; 13: 27, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22251412

RESUMO

BACKGROUND: DNA cytosine methylation is an epigenetic modification that has been implicated in many biological processes. However, large-scale epigenomic studies have been applied to very few plant species, and variability in methylation among specialized tissues and its relationship to gene expression is poorly understood. RESULTS: We surveyed DNA methylation from seven distinct tissue types (vegetative bud, male inflorescence [catkin], female catkin, leaf, root, xylem, phloem) in the reference tree species black cottonwood (Populus trichocarpa). Using 5-methyl-cytosine DNA immunoprecipitation followed by Illumina sequencing (MeDIP-seq), we mapped a total of 129,360,151 36- or 32-mer reads to the P. trichocarpa reference genome. We validated MeDIP-seq results by bisulfite sequencing, and compared methylation and gene expression using published microarray data. Qualitative DNA methylation differences among tissues were obvious on a chromosome scale. Methylated genes had lower expression than unmethylated genes, but genes with methylation in transcribed regions ("gene body methylation") had even lower expression than genes with promoter methylation. Promoter methylation was more frequent than gene body methylation in all tissues except male catkins. Male catkins differed in demethylation of particular transposable element categories, in level of gene body methylation, and in expression range of genes with methylated transcribed regions. Tissue-specific gene expression patterns were correlated with both gene body and promoter methylation. CONCLUSIONS: We found striking differences among tissues in methylation, which were apparent at the chromosomal scale and when genes and transposable elements were examined. In contrast to other studies in plants, gene body methylation had a more repressive effect on transcription than promoter methylation.


Assuntos
Cromossomos de Plantas/genética , Citosina/metabolismo , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Populus/genética , Epigênese Genética , Populus/metabolismo , Regiões Promotoras Genéticas , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA