Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 149, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794010

RESUMO

COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.

2.
Vaccines (Basel) ; 9(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34696219

RESUMO

Most approved vaccines against COVID-19 have to be administered in a prime/boost regimen. We engineered a novel vaccine based on a chimeric human adenovirus 5 (hAdV5) vector. The vaccine (named CoroVaxG.3) is based on three pillars: (i) high expression of Spike to enhance its immunodominance by using a potent promoter and an mRNA stabilizer; (ii) enhanced infection of muscle and dendritic cells by replacing the fiber knob domain of hAdV5 by hAdV3; (iii) use of Spike stabilized in a prefusion conformation. The transduction with CoroVaxG.3-expressing Spike (D614G) dramatically enhanced the Spike expression in human muscle cells, monocytes and dendritic cells compared to CoroVaxG.5 that expressed the native fiber knob domain. A single dose of CoroVaxG.3 induced a potent humoral immunity with a balanced Th1/Th2 ratio and potent T-cell immunity, both lasting for at least 5 months. Sera from CoroVaxG.3-vaccinated mice was able to neutralize pseudoviruses expressing B.1 (wild type D614G), B.1.117 (alpha), P.1 (gamma) and B.1.617.2 (delta) Spikes, as well as an authentic P.1 SARS-CoV-2 isolate. Neutralizing antibodies did not wane even after 5 months, making this kind of vaccine a likely candidate to enter clinical trials.

3.
Elife ; 92020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32746966

RESUMO

Although many high-risk mucosal and cutaneous human papillomaviruses (HPVs) theoretically have the potential to synthesize L1 isoforms differing in length, previous seroepidemiological studies only focused on the short L1 variants, co-assembling with L2 to infectious virions. Using the multimammate mouse Mastomys coucha as preclinical model, this is the first study demonstrating seroconversion against different L1 isoforms during the natural course of papillomavirus infection. Intriguingly, positivity with the cutaneous MnPV was accompanied by a strong seroresponse against a longer L1 isoform, but to our surprise, the raised antibodies were non-neutralizing. Only after a delay of around 4 months, protecting antibodies against the short L1 appeared, enabling the virus to successfully establish an infection. This argues for a novel humoral immune escape mechanism that may also have important implications on the interpretation of epidemiological data in terms of seropositivity and protection of PV infections in general.


Cancer is not one disease but rather a collection of disorders. As such there are many reasons why someone may develop cancer during their lifetime, including the individual's family history, lifestyle and habits. Infections with certain viruses can also lead to cancer and human papillomaviruses are viruses that establish long-term infections that may result in cancers including cervical and anal cancer, and the most common form of cancer worldwide, non-melanoma skin cancer. The human papillomavirus, or HPV for short, is made up of DNA surrounded by a protective shell, which contains many repeats of a protein called L1. These L1 proteins stick to the surfaces of human cells, allowing the virus to get access inside, where it can replicate before spreading to new cells. The immune system responds strongly to HPV infections by releasing antibodies that latch onto L1 proteins. It was therefore not clear how HPV could establish the long-term infections and cause cancer when it was seeming being recognized by the immune system. Now, Fu et al. have used the Southern multimammate mouse, Mastomys coucha, as a model system for an HPV infection to uncover how papillomaviruses can avoid the immune response. This African rodent is naturally infected with a skin papillomavirus called MnPV which, like its counterpart in humans, can trigger the formation of skin warts and malignant skin tumors. Fu et al. took blood samples from animals that had been infected with the virus over a period of 76 weeks to monitor their immune response overtime. This revealed that, in the early stages of infection, the virus made longer-than-normal versions of the L1 protein. Further analysis showed that these proteins could not form the virus's protective shell but could trigger the animals to produce antibodies against them. Fu et al. went on to show that the antibodies that recognized the longer variants of L1 protein where "non-neutralizing", meaning that could not block the spread of the virus, which is a prerequisite for immunity. It was only after a delay of four months that the animals started making neutralizing antibodies that were directed against the shorter L1 proteins that actually makes up the virus's protective coat. These findings suggest that virus initially uses the longer version of the L1 protein as a decoy to circumvent the attention of the immune system and provide itself with enough time to establish an infection. The findings also have implications for other studies that have sought to assess the success of an immune response during a papillomavirus infection. Specifically, the delayed production of the neutralizing antibodies means that their presence does not necessarily indicate that a patient is not already infected by a papillomavirus that in the future may cause cancer.


Assuntos
Imunidade Adaptativa , Proteínas do Capsídeo/metabolismo , Murinae , Papillomaviridae/fisiologia , Infecções por Papillomavirus/veterinária , Doenças dos Roedores/imunologia , Animais , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Isoformas de Proteínas/metabolismo , Doenças dos Roedores/virologia
4.
Front Microbiol ; 9: 874, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770129

RESUMO

There is still controversy in the scientific field about whether certain types of cutaneous human papillomaviruses (HPVs) are causally involved in the development of non-melanoma skin cancer (NMSC). Deciphering the etiological role of cutaneous HPVs requires - besides tissue culture systems - appropriate preclinical models to match the obtained results with clinical data from affected patients. Clear scientific evidence about the etiology and underlying mechanisms involved in NMSC development is fundamental to provide reasonable arguments for public health institutions to classify at least certain cutaneous HPVs as group 1 carcinogens. This in turn would have implications on fundraising institutions and health care decision makers to force - similarly as for anogenital cancer - the implementation of a broad vaccination program against "high-risk" cutaneous HPVs to prevent NMSC as the most frequent cancer worldwide. Precise knowledge of the multi-step progression from normal cells to cancer is a prerequisite to understand the functional and clinical impact of cofactors that affect the individual outcome and the personalized treatment of a disease. This overview summarizes not only recent arguments that favor the acceptance of a viral etiology in NMSC development but also reflects aspects of causality in medicine, the use of empirically meaningful model systems and strategies for prevention.

5.
PLoS Pathog ; 13(11): e1006723, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29190285

RESUMO

Cutaneous human papillomaviruses (HPVs) are considered as cofactors for non-melanoma skin cancer (NMSC) development, especially in association with UVB. Extensively studied transgenic mouse models failed to mimic all aspects of virus-host interactions starting from primary infection to the appearance of a tumor. Using the natural model Mastomys coucha, which reflects the human situation in many aspects, we provide the first evidence that only UVB and Mastomys natalensis papillomavirus (MnPV) infection strongly promote NMSC formation. Using UVB exposures that correspond to UV indices of different geographical regions, irradiated animals developed either well-differentiated keratinizing squamous cell carcinomas (SCCs), still supporting productive infections with high viral loads and transcriptional activity, or poorly differentiated non-keratinizing SCCs almost lacking MnPV DNA and in turn, early and late viral transcription. Intriguingly, animals with the latter phenotype, however, still showed strong seropositivity, clearly verifying a preceding MnPV infection. Of note, the mere presence of MnPV could induce γH2AX foci, indicating that viral infection without prior UVB exposure can already perturb genome stability of the host cell. Moreover, as shown both under in vitro and in vivo conditions, MnPV E6/E7 expression also attenuates the excision repair of cyclobutane pyrimidine dimers upon UVB irradiation, suggesting a viral impact on the DNA damage response. While mutations of Ras family members (e.g. Hras, Kras, and Nras) were absent, the majority of SCCs harbored-like in humans-Trp53 mutations especially at two hot-spots in the DNA-binding domain, resulting in a loss of function that favored tumor dedifferentiation, counter-selective for viral maintenance. Such a constellation provides a reasonable explanation for making continuous viral presence dispensable during skin carcinogenesis as observed in patients with NMSC.


Assuntos
Carcinoma de Células Escamosas/virologia , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Neoplasias Cutâneas/virologia , Raios Ultravioleta , Animais , Carcinogênese/genética , Reparo do DNA/genética , Humanos , Camundongos Transgênicos , Infecções por Papillomavirus/complicações , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/terapia
6.
PLoS One ; 11(8): e0161283, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27533138

RESUMO

In the present report we describe the establishment of a spontaneous immortalized skin keratinocyte cell line derived from the skin of the multimammate rodent Mastomys coucha. These animals are used in preclinical studies for a variety of human diseases such as infections with nematodes, bacteria and papillomaviruses, especially regarding cutaneous manifestations such as non-melanoma skin cancer. Here we characterize the cells in terms of their origin and cytogenetic features. Searching for genomic signatures, a spontaneous mutation in the splicing donor sequence of Trp53 (G to A transition at the first position of intron 7) could be detected. This point mutation leads to alternative splicing and to a premature stop codon, resulting in a truncated and, in turn, undetectable form of p53, probably contributing to the process of immortalization. Mastomys coucha-derived skin keratinocytes can be used as an in vitro system to investigate molecular and immunological aspects of infectious agent interactions with their host cells.


Assuntos
Técnicas de Cultura de Células/métodos , Queratinócitos/citologia , Pele/citologia , Proteína Supressora de Tumor p53/genética , Animais , Sequência de Bases , Linhagem Celular , Modelos Animais de Doenças , Cariótipo , Murinae , Mutação Puntual/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
7.
J Biomed Opt ; 21(5): 55004, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27232593

RESUMO

The increased ability of TMX-202 (derivative of imiquimod) to penetrate the intact stratum corneum (SC) and the follicular orifices of porcine ear skin was shown ex vivo using confocal Raman microscopy and laser scanning microscopy. Moreover, to assess whether TMX-202 is able to reach the immune cells, Langerhans cells extracted from pretreated human skin were investigated ex vivo using confocal Raman microscopy combined with multivariate statistical methods. Tracking the Raman peak of dimethyl sulfoxide centered at 690 cm(−1), the absorption of TMX-202 containing formulation by Langerhans cells was shown. To answer the question whether the TMX-202 active ingredient is able to reach Langerhans cells, the attraction of immune cells to TMX-202 containing formulation treated skin was measured in the in vivo rodent model Mastomys coucha. The results show that TMX-202 active ingredient is able to reach Langerhans cells after penetrating through the intact skin and subsequently attract immune cells. Both the intercellular/transcellular as well as the follicular pathways allow the penetration through the intact barrier of the SC.


Assuntos
Adenina/análogos & derivados , Glicerofosfolipídeos/farmacologia , Células de Langerhans/efeitos dos fármacos , Microscopia Confocal , Absorção Cutânea , Pele/metabolismo , Análise Espectral Raman , Adenina/farmacologia , Animais , Humanos , Células de Langerhans/imunologia , Células de Langerhans/metabolismo , Murinae , Pele/citologia , Suínos
8.
J Gen Virol ; 97(7): 1658-1669, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27043420

RESUMO

Mastomys coucha, an African rodent, is a useful animal model of papillomavirus infection, as it develops both premalignant and malignant skin tumors as a consequence of a persistent infection with Mastomys natalensis papillomavirus (MnPV). In this study, we mapped the MnPV transcriptome in productive lesions by both classical molecular techniques and high-throughput RNA sequencing. Combination of these methods revealed a complex and comprehensive transcription map, with novel splicing events not described in other papillomaviruses. Furthermore, these splicing occurrences could potentially lead to the expression of novel E2, E1∧E4, E7 and L2 isoforms. Expression level estimation of each transcript showed that late-region mRNAs considerably outnumber early transcripts, with species coding for L1 and E1∧E4 being the most abundant. In summary, the full transcription map assembled in this study will allow us to further understand MnPV gene expression and the mechanisms that lead to natural tumour development.


Assuntos
Murinae/virologia , Papillomaviridae/genética , RNA Viral/genética , Neoplasias Cutâneas/virologia , Proteínas Virais/genética , Animais , Sequência de Bases , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Infecções por Papillomavirus/virologia , Poliadenilação/genética , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
9.
Hum Vaccin Immunother ; 11(2): 353-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692212

RESUMO

Cutaneous papillomaviruses are associated with specific skin diseases, such as extensive wart formation and the development of non-melanoma skin cancer (NMSC), especially in immunosuppressed patients. Hence, clinical approaches are required that prevent such lesions. Licensed human papillomavirus (HPV) vaccines confer type-restricted protection against HPV types 6, 11, 16 and 18, responsible of 90% of genital warts and 70% of cervical cancers, respectively. However, they do not protect against less prevalent high-risk types or cutaneous HPVs. Over the past few years, several studies explored the potential of developing vaccines targeting cutaneous papillomaviruses. These vaccines showed to be immunogenic and prevent skin tumor formation in certain animal models. Furthermore, under conditions mimicking the ones found in the intended target population (i.e., immunosuppression and in the presence of an already established infection before vaccination), recent preclinical data shows that immunization can still be effective. Strategies are currently focused on finding vaccine formulations that can confer protection against a broad range of papillomavirus-associated diseases. The state-of-the-art of these approaches and the future directions in the field will be presented.


Assuntos
Papillomaviridae/imunologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/imunologia , Neoplasias Cutâneas/prevenção & controle , Animais , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Humanos
10.
PLoS Pathog ; 10(2): e1003924, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586150

RESUMO

Certain cutaneous human papillomaviruses (HPVs), which are ubiquitous and acquired early during childhood, can cause a variety of skin tumors and are likely involved in the development of non-melanoma skin cancer, especially in immunosuppressed patients. Hence, the burden of these clinical manifestations demands for a prophylactic approach. To evaluate whether protective efficacy of a vaccine is potentially translatable to patients, we used the rodent Mastomys coucha that is naturally infected with Mastomys natalensis papillomavirus (MnPV). This skin type papillomavirus induces not only benign skin tumours, such as papillomas and keratoacanthomas, but also squamous cell carcinomas, thereby allowing a straightforward read-out for successful vaccination in a small immunocompetent laboratory animal. Here, we examined the efficacy of a virus-like particle (VLP)-based vaccine on either previously or newly established infections. VLPs raise a strong and long-lasting neutralizing antibody response that confers protection even under systemic long-term cyclosporine A treatment. Remarkably, the vaccine completely prevents the appearance of benign as well as malignant skin tumors. Protection involves the maintenance of a low viral load in the skin by an antibody-dependent prevention of virus spread. Our results provide first evidence that VLPs elicit an effective immune response in the skin under immunocompetent and immunosuppressed conditions in an outbred animal model, irrespective of the infection status at the time of vaccination. These findings provide the basis for the clinical development of potent vaccination strategies against cutaneous HPV infections and HPV-induced tumors, especially in patients awaiting organ transplantation.


Assuntos
Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/farmacologia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/virologia , Vacinas de Partículas Semelhantes a Vírus/farmacologia , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hospedeiro Imunocomprometido , Imuno-Histoquímica , Hibridização In Situ , Murinae , Infecções por Papillomavirus/imunologia , Neoplasias Cutâneas/imunologia , Carga Viral
11.
PLoS One ; 7(7): e41351, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844463

RESUMO

Stings by insects from the Hymenoptera order are known to cause life-threatening allergic reactions and impair life quality. Despite the effectiveness of conventional vespid venom immunotherapy, more standardized and safer allergy vaccines are required and recombinant hypoallergenic variants are important clinical tools. Antigen 5 is a major allergen of vespid venoms and it was previously reported that Antigen 5 from Polybia scutellaris (Poly s 5) could be a hypoallergenic variant. In this work we assess the immunological behavior and allergenic activity of Poly s 5 in order to explore its suitability for specific immunotherapy. With this aim, recombinant Poly s 5 was expressed in Pichia pastoris and the presence of cross-reactive epitopes with Pol a 5, a known allergenic Antigen 5, was investigated both at the IgG and IgE levels, by ELISA assays and a basophil-mediator release assay respectively. A molecular model was also built to better understand the relationship between immunological and structural aspects. In mice, Poly s 5 induced IgG antibodies which cross-reacted with Pol a 5. However, Poly s 5 induced only minimal amounts of IgE and was a poor inducer of basophil-mediator release, even when the cells were sensitized with Pol a 5-specific IgE. Moreover, Poly s 5-specific serum showed a specific protective activity and was able to inhibit the Pol a 5-induced basophil degranulation. Structural analysis from the molecular model revealed that a few amino acid substitutions in the N-terminal region of Poly s 5 should lead to an alteration of the surface topography and electrostatic potential of the epitopes which could be responsible for its hypoallergenic behavior. These findings, taken as a whole, show that Poly s 5 is likely a naturally occurring hypoallergenic Antigen 5 variant.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Produtos Biológicos/química , Produtos Biológicos/imunologia , Dessensibilização Imunológica/métodos , Venenos de Vespas/química , Vespas/imunologia , Sequência de Aminoácidos , Animais , Reações Cruzadas , Epitopos/imunologia , Imunização , Imunoglobulina G/biossíntese , Masculino , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica
12.
Protein Expr Purif ; 73(1): 23-30, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20371379

RESUMO

Stings by insects from the Hymenoptera order can cause life-threatening allergic reactions and impair life quality. Immunotherapy with venom extracts is the most extensively employed treatment to reduce morbidity and mortality, but purified and safer allergy vaccines are needed. Antigen 5 is an important allergen of vespid venoms. We previously reported that Antigen 5 from Polybia scutellaris (Poly s 5) is likely to be a hypoallergenic variant. On the basis of such findings, this work deals with the recombinant expression and purification of Poly s 5 in Pichia pastoris. In order to overcome non-native glycosylation of the recombinant protein, it was necessary to delete a glycosylation site. On the other hand, different strategies were attempted to obtain a satisfactory yield of the protein; moreover, the influence of the methanol concentration in the expression medium was investigated and found to be crucial. Mass spectrometry, N-terminal sequencing, and IgG-binding inhibition assays were performed. Results allowed us to confirm the immunological equivalence between the recombinant and the natural proteins. In conclusion, a novel protocol for the recombinant expression of Poly s 5 in P. pastoris was designed thus bringing about a high yield of the protein useful for clinical and scientific purposes.


Assuntos
Clonagem Molecular/métodos , Pichia/genética , Venenos de Vespas/biossíntese , Animais , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Glicosilação , Ensaios de Triagem em Larga Escala , Camundongos , Mutagênese Sítio-Dirigida , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Espectrometria de Massas por Ionização por Electrospray , Venenos de Vespas/química , Venenos de Vespas/genética , Venenos de Vespas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA