Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Lab Chip ; 24(16): 3930-3944, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-38993177

RESUMO

The metastatic cascade includes a blood circulation step for cells detached from the primary tumor. This stage involves significant shear stress as well as large and fast deformation as the cells circulate through the microvasculature. These mechanical stimuli are well reproduced in microfluidic devices. However, the recovery dynamics after deformation is also pivotal to understand how a cell can pass through the multiple capillary constrictions encountered during a single hemodynamic cycle. The microfluidic system developed in this work allows single cell recovery to be studied under flow-free conditions following pressure-actuated cell deformation inside constricted microchannels. We used three breast cancer cell lines - namely MCF-7, SK-BR3 and MDA-MB231 - as cellular models representative of different cancer phenotypes. Changing the size of the constriction allows exploration of moderate to strong deformation regimes, the latter being associated with the formation of plasma membrane blebs. In the regime of moderate deformation, all cell types display a fast elastic recovery behavior followed by a slower viscoelastic regime, well described by a double exponential decay. Among the three cell types, cells of the mesenchymal phenotype, i.e. the MDA-MB231 cells, are softer and the most fluid-like, in agreement with previous studies. Our main finding here is that the fast elastic recovery regime revealed by our novel microfluidic system is under the control of cell contractility ensured by the integrity of the cell cortex. Our results suggest that the cell cortex plays a major role in the transit of circulating tumor cells by allowing their fast morphological recovery after deformation in blood capillaries.


Assuntos
Técnicas Analíticas Microfluídicas , Humanos , Linhagem Celular Tumoral , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Células MCF-7
2.
Methods Mol Biol ; 2804: 65-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753140

RESUMO

In recent years, the analysis of circulating cell-free DNA (cfDNA) containing tumor-derived DNA has emerged as a noninvasive means for cancer monitoring and personalized medicine. However, the isolation of cfDNA from peripheral blood has remained a challenge due to the low abundance and high fragmentation of these molecules. Here, we present a dynamic Magnetic ExTRactiOn (METRO) protocol using microfluidic fluidized bed technology to isolate circulating cfDNA from raw biological materials such as undiluted serum. This protocol maximizes the surface area for DNA binding within the chip in order to capture short DNA fragments. It uses only a few µL of sample and reagents. The protocol can be automated, and it is fully compatible with sensitive DNA amplification methods such as droplet-based digital PCR (ddPCR).


Assuntos
Ácidos Nucleicos Livres , Dispositivos Lab-On-A-Chip , Humanos , Ácidos Nucleicos Livres/isolamento & purificação , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Reação em Cadeia da Polimerase/métodos , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Magnetismo/métodos , Neoplasias/sangue , Neoplasias/genética , Neoplasias/diagnóstico
3.
Lab Chip ; 23(24): 5139-5150, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37942508

RESUMO

3D in vitro biological systems are progressively replacing 2D systems to increase the physiological relevance of cellular studies. Microfluidics-based approaches can be powerful tools towards such biomimetic systems, but often require high-end complicated and expensive processes and equipment for microfabrication. Herein, a drug screening platform is proposed, minimizing technicality and manufacturing steps. It provides an alternate way of spheroid generation in droplets in tubes. Droplet microfluidics then elicit multiple droplets merging events at programmable times, to submit sequentially the spheroids to chemotherapy and to reagents for cytotoxicity screening. After a comprehensive study of tumorogenesis within the droplets, the system is validated for drug screening (IC50) with chemotherapies in cancer cell lines as well as cells from a patient-derived-xenografts (PDX). As compared to microtiter plates methods, our system reduces the initial number of cells up to 10 times and opens new avenues towards primary tumors drug screening approaches.


Assuntos
Microfluídica , Neoplasias , Humanos , Microfluídica/métodos , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Esferoides Celulares , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
4.
Lab Chip ; 23(6): 1713, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36852524

RESUMO

Correction for 'Developing an advanced gut on chip model enabling the study of epithelial cell/fibroblast interactions' by Marine Verhulsel et al., Lab Chip, 2021, 21, 365-377, https://doi.org/10.1039/d0lc00672f.

5.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454795

RESUMO

Microfluidics has provided clinicians with new technologies to detect and analyze circulating tumor biomarkers in order to further improve their understanding of disease mechanism, as well as to improve patient management. Among these different biomarkers, circulating tumor cells have proven to be of high interest for different types of cancer and in particular for breast cancer. Here we focus our attention on a breast cancer subtype referred as HER2-positive breast cancer, this cancer being associated with an amplification of HER2 protein at the plasma membrane of cancer cells. Combined with therapies targeting the HER2 protein, HER2-HER3 dimerization blockade further improves a patient's outcome. In this work, we propose a new approach to CTC characterization by on-chip integrating proximity ligation assay, so that we can quantify the HER2-HER3 dimerization event at the level of single CTC. To achieve this, we developed a microfluidic approach combining both CTC capture, identification and HER2-HER3 status quantification by Proximity Ligation Assay (PLA). We first optimized and demonstrated the potential of the on-chip quantification of HER2-HER3 dimerization using cancer cell lines with various levels of HER2 overexpression and validated its clinical potential with a patient's sample treated or not with HER2-targeted therapy.

6.
Cell ; 184(20): 5230-5246.e22, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551315

RESUMO

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Lab Chip ; 21(2): 365-377, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33306083

RESUMO

Organoids are widely used as a model system to study gut pathophysiology; however, they fail to fully reproduce the complex, multi-component structure of the intestinal wall. We present here a new gut on chip model that allows the co-culture of primary epithelial and stromal cells. The device has the topography and dimensions of the mouse gut and is based on a 3D collagen I scaffold. The scaffold is coated with a thin layer of laminin to mimic the basement membrane. To maintain the scaffold structure while preserving its cytocompatibility, the collagen scaffold was rigidified by threose-based post-polymerization treatment. This treatment being cytocompatible enabled the incorporation of primary intestinal fibroblasts inside the scaffold, reproducing the gut stromal compartment. We observed that mouse organoids, when deposited into crypts, opened up and epithelialized the scaffold, generating a polarized epithelial monolayer. Proper segregation of dividing and differentiated cells along the crypt-villus axis was achieved under these conditions. Finally, we show that the application of fluid shear stress allows the long-term culture of this intestinal epithelium. Our device represents a new biomimetic tool that captures key features of the gut complexity and could be used to study gut pathophysiology.


Assuntos
Mucosa Intestinal , Intestinos , Animais , Comunicação Celular , Células Epiteliais , Fibroblastos , Camundongos
8.
Phys Rev E ; 101(3-1): 032407, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289957

RESUMO

The nucleoprotein filament (NPF) is the fundamental element of homologous recombination (HR), a major mechanism for the repair of double-strand DNA breaks in the cell. The NPF is made of the damaged DNA strand surrounded by recombinase proteins, and its sensitivity to base-pairing mismatches is a crucial feature that guarantees the fidelity of the repair. The concurrent recombinases are also essential for several steps of HR. In this work, we used torque-sensitive magnetic tweezers to probe and apply mechanical constraints to single nucleoprotein filaments (NPFs). We demonstrated that the NPF undergoes structural transitions from a stretched to a compact state, and we measured the corresponding mechanochemical signatures. Using an active two-state model, we proposed a free-energy landscape for the NPF transition. Using this quantitative model, we explained both how the sensitivity of the NPF to the homology length is regulated by its structural transition and how the cooperativity of Rad51 favors selectivity to relatively long homologous sequences.


Assuntos
Reparo do DNA , Fenômenos Mecânicos , Modelos Biológicos , Nucleoproteínas/química , Nucleoproteínas/metabolismo , Rad51 Recombinase/metabolismo , Homologia de Sequência de Aminoácidos , Fenômenos Biomecânicos , Especificidade por Substrato
9.
Sci Rep ; 10(1): 6386, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286431

RESUMO

Cancer mortality mainly arises from metastases, due to cells that escape from a primary tumor, circulate in the blood as circulating tumor cells (CTCs), permeate across blood vessels and nest in distant organs. It is still unclear how CTCs overcome the harsh conditions of fluid shear stress and mechanical constraints within the microcirculation. Here, a minimal model of the blood microcirculation was established through the fabrication of microfluidic channels comprising constrictions. Metastatic breast cancer cells of epithelial-like and mesenchymal-like phenotypes were flowed into the microfluidic device. These cells were visualized during circulation and analyzed for their dynamical behavior, revealing long-lived plastic deformations and significant differences in biomechanics between cell types. γ-H2AX staining of cells retrieved post-circulation showed significant increase of DNA damage response in epithelial-like SK-BR-3 cells, while gene expression analysis of key regulators of epithelial-to-mesenchymal transition revealed significant changes upon circulation. This work thus documents first results of the changes at the cellular, subcellular and molecular scales induced by the two main mechanical stimuli arising from circulatory conditions, and suggest a significant role of this still elusive step of the metastatic cascade in cancer cells heterogeneity and aggressiveness.


Assuntos
Células Neoplásicas Circulantes/patologia , Estresse Mecânico , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Humanos
10.
Chem Commun (Camb) ; 56(38): 5190-5193, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32267910

RESUMO

A new 3D architecture for the deterministic lateral displacement (DLD) microfluidic devices based on ultra-high aspect ratio arch shaped pillars is presented. The proposed system addresses the major flow rate and shear rate limitations of standard planar devices.

11.
Microsyst Nanoeng ; 6: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567633

RESUMO

Currently, fluidic control in microdevices is mainly achieved either by external pumps and valves, which are expensive and bulky, or by valves integrated in the chip. Numerous types of internal valves or actuation methods have been proposed, but they generally impose difficult compromises between performance and fabrication complexity. We propose here a new paradigm for actuation in microfluidic devices based on rigid or semi-rigid walls with transversal dimensions of hundreds of micrometres that are able to slide within a microfluidic chip and to intersect microchannels with hand-driven or translation stage-based actuation. With this new concept for reconfigurable microfluidics, the implementation of a wide range of functionalities was facilitated and allowed for no or limited dead volume, low cost and low footprint. We demonstrate here several fluidic operations, including on/off or switch valving, where channels are blocked or reconfigured depending on the sliding wall geometry. The valves sustain pressures up to 30 kPa. Pumping and reversible compartmentalisation of large microfluidic chambers were also demonstrated. This last possibility was applied to a "4D" migration assay of dendritic cells in a collagen gel. Finally, sliding walls containing a hydrogel-based membrane were developed and used to concentrate, purify and transport biomolecules from one channel to another, such functionality involving complex fluidic transport patterns not possible in earlier microfluidic devices. Overall, this toolbox is compatible with "soft lithography" technology, allowing easy implementation within usual fabrication workflows for polydimethylsiloxane chips. This new technology opens the route to a variety of microfluidic applications, with a focus on simple, hand-driven devices for point-of-care or biological laboratories with low or limited equipment and resources.

12.
Methods Mol Biol ; 1855: 327-340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30426429

RESUMO

Aggregation of beta-amyloid peptides especially Aß1-42 in amyloid plaques is one of the major neuropathological events in Alzheimer's disease. This event is normally accompanied by a relative reduction of the concentration of Aß1-42 in the cerebrospinal fluid (CSF) of patient developing the signs of Alzheimer's disease. Here, we describe methods for isolation and for microchip gel electrophoresis of Aß peptides in polydimethylsiloxane (PDMS) microfluidic chip. The method was applied to compare the relative concentration of Aß1-42 with other Aß peptides, for example, Aß 1-40 in CSF. In order to increase the sensitivity of detection, Aß peptides in the CSF samples were first captured and concentrated using magnetic beads coated with specific anti-Aß antibodies.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Eletroforese em Microchip/métodos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Peptídeos beta-Amiloides/isolamento & purificação , Anticorpos Imobilizados/química , Dimetilpolisiloxanos/química , Eletroforese em Microchip/instrumentação , Desenho de Equipamento , Humanos , Imãs/química , Fragmentos de Peptídeos/isolamento & purificação
13.
Methods Cell Biol ; 148: 71-95, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30473075

RESUMO

Microfluidic devices for controlling neuronal connectivity in vitro are extremely useful tools for deciphering pathological and physiological processes occurring in neuronal networks. These devices allow the connection between different neuronal populations located into separate culture chambers through axon-selective microchannels. In order to implement specific features of brain connectivity such as directionality, it is necessary to control axonal growth orientation in these devices. Among the various strategies proposed to achieve this goal, one of the most promising and easily reproducible is the use of asymmetric microchannels. We present here a general protocol and several guidelines for the design, production and testing of a new paradigm of asymmetric microchannels geometries based on a "return to sender" strategy. In this method, axons are either allowed to travel between the emitting and receiving chambers within straight microchannels (forward direction), or are rerouted toward their initial location through curved microchannels (reverse direction). We introduce variations of these "arches" microchannels and evaluate their respective axonal filtering capacities. Importantly, one of these variants presents an almost complete filtration of axonal growth in the non-permissive direction while allowing robust axonal invasion in the other one, with a selectivity ratio as high as 99.7%.


Assuntos
Comunicação Celular , Dispositivos Lab-On-A-Chip , Neurônios/metabolismo , Animais , Axônios/metabolismo , Humanos , Canais Iônicos/metabolismo
14.
Methods Cell Biol ; 147: 59-75, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30165963

RESUMO

Bacterial contamination and subsequent infections are a major threat to human health. An early detection in the food chain, clinics or the environment, is key to limit this threat. We present a new concept to develop low-cost hand-held devices for the ultra-sensitive and specific detection of bacteria in a one-step process of 2-8h, directly from complex raw samples. This approach is based on a novel microfluidic magnetic fluidized bed. It reaches a 4CFU (colony forming unit) sensitivity with high quantification accuracy in a large dynamic range of 100-107CFU/mL. The versatility of the approach was demonstrated with the detection of different bacteria strains, among which Salmonella Typhimurium and E. coli O157:H15. Additionally, the method is sensitive to infectious bacteria only, a criterion requested by main applications and currently requiring additional culture steps of one to several days.


Assuntos
Microfluídica/métodos , Antibacterianos/farmacologia , Processamento de Imagem Assistida por Computador , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento
15.
Biomicrofluidics ; 12(2): 024114, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657657

RESUMO

Multicellular tubes are structures ubiquitously found during development and in adult organisms. Their topologies (diameter, direction or branching), together with their mechanical characteristics, play fundamental roles in organ function and in the emergence of pathologies. In tubes of micrometric range diameters, typically found in the vascular system, renal tubules or excretory ducts, cells are submitted to a strong curvature and confinement effects in addition to flow. Then, small tubes with change in diameter are submitted to a local gradient of shear stress and curvature, which may lead to complex mechanotransduction responses along tubes, and may be involved in the onset or propagation of cystic or obstructive pathologies. We describe here a simple method to build a microfluidic device that integrates cylindrical channels with changes in diameter that mimic in vivo tube geometries. This microfabrication approach is based on molding of etched tungsten wires, which can achieve on a flexible way any change in diameter in a polydimethylsiloxane (PDMS) microdevice. The interest of this biomimetic multitube system has been evidenced by reproducing renal tubules on chip. In particular, renal cell lines were successfully seeded and grown in PDMS circular tubes with a transition between 80 µm and 50 µm diameters. Thanks to this biomimetic platform, the effect of the tube curvature has been investigated especially regarding cell morphology and orientation. The effect of shear stress on confluent cells has also been assessed simultaneously in both parts of tubes. It is thus possible to study interconnected cell response to differential constraints which is of central importance when mimicking tubes present in the organism.

16.
Anal Chim Acta ; 1000: 239-247, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29289316

RESUMO

The vast majority of current microfluidic devices are produced using soft lithography, a technique with strong limitations regarding the fabrication of three-dimensional architectures. Additive manufacturing holds great promises to overcome these limitations, but conventional machines still lack the resolution required by most microfluidic applications. 3D printing machines based on two-photon lasers, in contrast, have the needed resolution but are too limited in speed and size of the global device. Here we demonstrate how the resolution of conventional stereolithographic machines can be improved by a direct programming of the laser path and can contribute to bridge the gap between the two above technologies, allowing the direct printing of features between 10 and 100 µm, corresponding to a large fraction of microfluidic applications. This strategy allows to achieve resolutions limited only by the physical size of the laser beam, decreasing by a factor at least 2× the size of the smallest features printable, and increasing their reproducibility by a factor 5. The approach was applied to produce an open microfluidic device with the reversible seal, integrating periodical patterns using the simple motifs, and validated by the fabrication of a deterministic lateral displacement particles sorting device. The sorting of polystyrene beads (diameter: 20 µm and 45 µm) was achieved with a specificity >95%, comparable with that achieved with arrays prepared by microlithography.

17.
Electrophoresis ; 39(3): 526-533, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28868639

RESUMO

The success of microfluidic immunocapture based on magnetic beads depends primarily on a sophisticated microscale separation system and on the quality of the magnetic immunosorbent. A microfluidic chip containing a magnetically stabilized fluidized bed (µMSFB), developed for the capture and on-chip amplification of bacteria, was recently described by Pereiro et al.. The present work shows the thorough development of anti-Salmonella magnetic immunosorbents with the optimal capture efficiency and selectivity. Based on the corresponding ISO standards, these parameters have to be high enough to capture even a few cells of bacteria in a proper aliquot of sample, e.g. milk. The selection of specific anti-Salmonella IgG molecules and the conditions for covalent bonding were the key steps in preparing an immunosorbent of the desired quality. The protocol for immunocapturing was first thoroughly optimized and studied in a batchwise arrangement, and then the carrier was integrated into the µMSFB chip. The combination of the unique design of the chip (guaranteeing the collision of cells with magnetic beads) with the advanced immunosorbent led to a Salmonella cell capture efficiency of up to 99%. These high values were achieved repeatedly even in samples of milk differing in fat content. The rate of nonspecific capture of Escherichia coli (i.e. the negative control) was only 2%.


Assuntos
Separação Imunomagnética/métodos , Leite/química , Salmonella/isolamento & purificação , Animais , Escherichia coli/isolamento & purificação , Imunoglobulina G/química , Separação Imunomagnética/instrumentação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microesferas , Salmonella/citologia , Salmonella/imunologia
18.
Biosens Bioelectron ; 102: 531-539, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29216580

RESUMO

Magnetic solid phase substrates for biomolecule manipulation have become a valuable tool for simplification and automation of molecular biology protocols. However, the handling of magnetic particles inside microfluidic chips for miniaturized assays is often challenging due to inefficient mixing, aggregation, and the advanced instrumentation required for effective actuation. Here, we describe the use of a microfluidic magnetic fluidized bed approach that enables dynamic, highly efficient and simplified magnetic bead actuation for DNA analysis in a continuous flow platform with minimal technical requirements. We evaluate the performance of this approach by testing the efficiency of individual steps of a DNA assay based on padlock probes and rolling circle amplification. This assay comprises common nucleic acid analysis principles, such as hybridization, ligation, amplification and restriction digestion. We obtained efficiencies of up to 90% for these reactions with high throughput processing up to 120µL of DNA dilution at flow rates ranging from 1 to 5µL/min without compromising performance. The fluidized bed was 20-50% more efficient than a commercially available solution for microfluidic manipulation of magnetic beads. Moreover, to demonstrate the potential of this approach for integration into micro-total analysis systems, we optimized the production of a low-cost polymer based microarray and tested its analytical performance for integrated single-molecule digital read-out. Finally, we provide the proof-of-concept for a single-chamber microfluidic chip that combines the fluidized bed with the polymer microarray for a highly simplified and integrated magnetic bead-based DNA analyzer, with potential applications in diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , DNA/isolamento & purificação , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Diagnóstico Molecular/métodos , DNA/química , Dispositivos Lab-On-A-Chip , Magnetismo , Hibridização de Ácido Nucleico
19.
Chem Sci ; 8(2): 1329-1336, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626552

RESUMO

A microfluidic method to specifically capture and detect infectious bacteria based on immunorecognition and proliferative power is presented. It involves a microscale fluidized bed in which magnetic and drag forces are balanced to retain antibody-functionalized superparamagnetic beads in a chamber during sample perfusion. Captured cells are then cultivated in situ by infusing nutritionally-rich medium. The system was validated by the direct one-step detection of Salmonella Typhimurium in undiluted unskimmed milk, without pre-treatment. The growth of bacteria induces an expansion of the fluidized bed, mainly due to the volume occupied by the newly formed bacteria. This expansion can be observed with the naked eye, providing simple low-cost detection of only a few bacteria and in a few hours. The time to expansion can also be measured with a low-cost camera, allowing quantitative detection down to 4 cfu (colony forming unit), with a dynamic range of 100 to 107 cfu ml-1 in 2 to 8 hours, depending on the initial concentration. This mode of operation is an equivalent of quantitative PCR, with which it shares a high dynamic range and outstanding sensitivity and specificity, operating at the live cell rather than DNA level. Specificity was demonstrated by controls performed in the presence of a 500× excess of non-pathogenic Lactococcus lactis. The system's versatility was demonstrated by its successful application to the detection and quantitation of Escherichia coli O157:H15 and Enterobacter cloacae. This new technology allows fast, low-cost, portable and automated bacteria detection for various applications in food, environment, security and clinics.

20.
Lab Chip ; 17(9): 1603-1615, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28382356

RESUMO

Fluidization, a process in which a granular solid phase behaves like a fluid under the influence of an imposed upward fluid flow, is routinely used in many chemical and biological engineering applications. It brings, to applications involving fluid-solid exchanges, advantages such as high surface to volume ratio, constant mixing, low flow resistance, continuous operation and high heat transfer. We present here the physics of a new miniaturized, microfluidic fluidized bed, in which gravity is replaced by a magnetic field created by an external permanent magnet, and the solid phase is composed of magnetic microbeads with diameters ranging from 1 to 5 µm. These beads can be functionalized with different ligands, catalysts or enzymes, in order to use the fluidized bed as a continuous purification column or bioreactor. It allows flow-through operations at flow rates ranging from 100 nL min-1 up to 5 µL min-1 at low driving pressures (<100 mbar) with intimate liquid/solid contact and a continuous recirculation of beads for enhanced target capture efficiencies. The physics of the system presents significant differences as compared to conventional fluidized beds, which are studied here. The effects of magnetic field profile, flow chamber shape and magnetic bead dipolar interactions on flow regimes are investigated, and the different regimes of operation are described. Qualitative rules to obtain optimal operation are deduced. Finally, an exemplary use as a platform for immunocapture is provided, presenting a limit of detection of 0.2 ng mL-1 for 200 µL volume samples.


Assuntos
Imãs , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Extração em Fase Sólida/instrumentação , Extração em Fase Sólida/métodos , Biomarcadores/análise , Desenho de Equipamento , Humanos , Imunoensaio , Imunoglobulina G/isolamento & purificação , Limite de Detecção , Modelos Químicos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA