RESUMO
The role of circulating tumor cell (CTC) clusters in the metastatic dissemination process is gaining increased attention. Besides homotypic clusters, heterotypic clusters that contain tumor cells admixed with normal cells are frequently observed in patients with solid tumors. Current methods used for cluster detection and enumeration do not allow an accurate estimation of the relative fractions of tumor cells. Here we describe a method for estimating tumor fraction of clusters including isolation and collection of single clusters, assessment of copy number alterations of single clusters by low-pass whole genome sequencing, and bioinformatic analysis of sequencing data.
Assuntos
Células Neoplásicas Circulantes , Humanos , Genômica , Biologia Computacional , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: The isolation of circulating tumor cells (CTCs) requires rapid processing of the collected blood due to their inherent fragility. The ability to recover CTCs from peripheral blood mononuclear cells (PBMCs) preserved from cancer patients could allow for retrospective analyses or multicenter CTC studies. METHODS: We compared the efficacy of CTC recovery and characterization using cryopreserved PMBCs vs fresh whole blood from patients with non-small cell lung cancer (NSCLC; n = 8) and sarcoma (n = 6). Two epithelial cellular adhesion molecule (EpCAM)-independent strategies for CTC enrichment, based on Parsortix® technology or immunomagnetic depletion of blood cells (AutoMACS®) were tested, followed by DEPArray™ single-cell isolation. Phenotype and genotype, assessed by copy number alterations analysis, were evaluated at a single-cell level. Detection of target mutations in CTC-enriched samples from frozen NSCLC PBMCs was also evaluated by digital PCR (dPCR). RESULTS: The use of cryopreserved PBMCs from cancer patients allowed for the retrospective enumeration of CTCs and their molecular characterization, using both EpCAM-independent strategies that performed equally in capturing CTC. Cells isolated from frozen PBMCs were representative of whole blood-derived CTCs in terms of number, phenotype, and copy number aberration profile/target mutations. Long-term storage (≥3 years) did not affect the efficacy of CTC recovery. Detection of target mutations was also feasible by dPCR in CTC-enriched samples derived from stored PBMCs. CONCLUSIONS: Isolating CTCs from longitudinally collected PBMCs using an unbiased selection strategy can offer a wider range of retrospective genomic/phenotypic analyses to guide patients' personalized therapy, paving the way for sample sharing in multicenter studies.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Sarcoma , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Molécula de Adesão da Célula Epitelial/genética , Humanos , Leucócitos Mononucleares/metabolismo , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Estudos RetrospectivosRESUMO
Triple negative breast cancer (TNBC) is characterized by clinical aggressiveness, lack of recognized target therapy, and a dismal patient prognosis. Several studies addressed genomic changes occurring during neoadjuvant chemotherapy (NAC) focusing on somatic variants, but without including copy number alterations (CNAs). We analyzed CNA profiles of 31 TNBC primary tumor samples before and after NAC and of 35 single circulating tumor cells (CTCs) collected prior, during and after treatment by using next-generation sequencing targeted profile and low-pass whole genome sequencing, respectively. In pre-treatment tissue samples, the most common gains occurred on chromosomes 1, 2 and 8, and SOX11 and MYC resulted the most altered genes. Notably, amplification of MSH2 (4/4 versus 0/12, p < 0.01) and PRDM1 and deletion of PAX3 (4/4 versus 1/12, p < 0.01) significantly characterized primary tumors of patients with pathological complete response. All patients with paired pre- and post-NAC samples reported a change in post-treatment CNAs compared to baseline, despite they showed at least one common alteration. CNAs detected after treatment involved genes within druggable pathways such as EGFR, cell cycle process and Ras signaling. In two patients, CTCs shared more alterations with residual rather than primary tumor involving genes such as MYC, BCL6, SOX2, FGFR4. The phylogenetic analysis of CTCs within a single patient revealed NAC impact on tumor evolution, suggesting a selection of driver events under treatment pressure. In conclusion, our data showed how chemoresistance might arise early from treatment-induced selection of clones already present in the primary tumor, and that the characterization of CNAs on single CTCs informs on cancer evolution and potential druggable targets.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Variações do Número de Cópias de DNA/efeitos dos fármacos , Terapia Neoadjuvante , Células Neoplásicas Circulantes/patologia , Neoplasias de Mama Triplo Negativas/terapia , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biópsia , Mama/patologia , Mama/cirurgia , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Mastectomia , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Filogenia , Prognóstico , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Sequenciamento Completo do GenomaRESUMO
The clinical relevance of circulating tumor cell clusters (CTC-clusters) in breast cancer (BC) has been mostly studied using the CellSearch®, a marker-dependent method detecting only epithelial-enriched clusters. However, due to epithelial-to-mesenchymal transition, resorting to marker-independent approaches can improve CTC-cluster detection. Blood samples collected from healthy donors and spiked-in with tumor mammospheres, or from BC patients, were processed for CTC-cluster detection with 3 technologies: CellSearch®, CellSieve™ filters, and ScreenCell® filters. In spiked-in samples, the 3 technologies showed similar recovery capability, whereas, in 19 clinical samples processed in parallel with CellSearch® and CellSieve™ filters, filtration allowed us to detect more CTC-clusters than CellSearch® (median number = 7 versus 1, p = 0.0038). Next, samples from 37 early BC (EBC) and 23 metastatic BC (MBC) patients were processed using ScreenCell® filters for attaining both unbiased enrichment and marker-independent identification (based on cytomorphological criteria). At baseline, CTC-clusters were detected in 70% of EBC cases and in 20% of MBC patients (median number = 2, range 0-20, versus 0, range 0-15, p = 0.0015). Marker-independent approaches for CTC-cluster assessment improve detection and show that CTC-clusters are more frequent in EBC than in MBC patients, a novel finding suggesting that dissemination of CTC-clusters is an early event in BC natural history.
RESUMO
Circulating tumor microemboli (CTMs) are clusters of cancer cells detached from solid tumors, whose study can reveal mechanisms underlying metastatization. As they frequently comprise unknown fractions of leukocytes, the analysis of copy number alterations (CNAs) is challenging. To address this, we titrated known numbers of leukocytes into cancer cells (MDA-MB-453 and MDA-MB-36, displaying high and low DNA content, respectively) generating tumor fractions from 0-100%. After low-pass sequencing, ichorCNA was identified as the best algorithm to build a linear mixed regression model for tumor fraction (TF) prediction. We then isolated 53 CTMs from blood samples of six early-stage breast cancer patients and predicted the TF of all clusters. We found that all clusters harbor cancer cells between 8 and 48%. Furthermore, by comparing the identified CNAs of CTMs with their matched primary tumors, we noted that only 31-71% of aberrations were shared. Surprisingly, CTM-private alterations were abundant (30-63%), whereas primary tumor-private alterations were rare (4-12%). This either indicates that CTMs are disseminated from further progressed regions of the primary tumor or stem from cancer cells already colonizing distant sites. In both cases, CTM-private mutations may inform us about specific metastasis-associated functions of involved genes that should be explored in follow-up and mechanistic studies.
RESUMO
In metastatic breast cancer the role of circulating tumor cells (CTCs) enumeration for predicting clinical outcome is supported by many studies, most of them dealing with strictly epithelial cells. However, it is becoming clear that CTCs are a heterogeneous cell population characterized by plasticity and including also cells which have lost the epithelial phenotype. Here we review literature data on CTC heterogeneity both at phenotype and at molecular level and discuss the possible contribute of single cell analyses in precision medicine. We conclude with some remarks about the steps still necessary to achieve clinical validity and utility when considering also CTC phenotypic and molecular heterogeneity beyond a simple enumeration.
Assuntos
Neoplasias da Mama/patologia , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Neoplasias da Mama/genética , Humanos , Células Neoplásicas Circulantes/metabolismo , Fenótipo , Medicina de Precisão , Análise de Célula ÚnicaRESUMO
Circulating tumor cells (CTCs) are promising biomarkers for prognosis, therapeutic response prediction, and treatment monitoring in cancer patients. Despite its epithelial origin, renal cell carcinoma (RCC) shows low expression of epithelial markers hindering CTC-enrichment approaches exploiting epithelial cell surface proteins. In 21 blood samples serially collected from 10 patients with metastatic RCC entering the TARIBO trial, we overcame this limitation using the marker-independent Parsortix™ approach for CTC-enrichment coupled with positive and negative selection with the DEPArray™ with single cell recovery and analysis for copy number alterations (CNA) by next generation sequencing NGS. Two CTC subpopulations were identified: epithelial CTC (eCTC) and non-conventional CTC (ncCTC) lacking epithelial and leukocyte markers. With a threshold ≥1CTC/10 mL of blood, the positivity rates were 28% for eCTC, 62% for ncCTCs, and 71% considering both CTC types. In two patients with detectable eCTCs at baseline, progression free survival was less than 5 months. In an index case, hierarchical structure by translational oncology (TRONCO) identified three clones among 14 CTCs collected at progression and at baseline, each containing cells with a 9p21.3loss, a well-known metastasis driving subclonal alteration. CTCs detection in RCC can be increased by marker-independent approaches, and CTC molecular characterization can allow detection of subclonal events possibly related to tumor progression.
Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Deleção Cromossômica , Cromossomos Humanos Par 9/genética , Neoplasias Renais , Células Neoplásicas Circulantes , Análise de Célula Única , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologiaRESUMO
In biliary tract cancer (BTC), tissue biopsies to guide treatment are rarely feasible, thus implementing liquid biopsy approaches to improve patient management represents a priority. So far, studies on circulating tumor cells (CTCs) in BTC are insufficient to promote their use in patient clinical management and are limited to EpCAM-enriched CTCs evaluated with the CellSearch. We applied a single-cell protocol allowing identification not only of epithelial CTCs (eCTCs), but also of nonconventional CTCs (ncCTCs) lacking epithelial and leukocyte markers, but presenting aberrant genomes as confirmed by copy number alterations and therefore representing a distinct subpopulation of bona fide CTCs. In 41 blood samples longitudinally collected from 21 patients with advanced-stage BTC, addition of ncCTC to classic eCTC led to a CTC-positivity increase from 19% to 83%. Patients presenting with at least 1 eCTC/10 ml of blood at baseline prior to treatment start had a significantly shorter median disease-specific survival (DSS) compared to those lacking eCTCs (9 months vs. 19 months, p = 0.03 by log-rank test). No differences in DSS were observed according to ncCTC-positivity, conversely, variations in ncCTC counts during, and at the end of treatment, were associated with the RECIST response supporting their role in treatment monitoring. Moreover, in 88 ncCTCs collected at different times during treatment, unsupervised clustering evidenced segregation of cells by patient's best response, allowing identification of genomic regions possibly involved in resistance mechanisms. The presence of ncCTCs beside eCTCs opens the way to exploiting liquid biopsy for optimizing clinical management in BTC.
Assuntos
Neoplasias do Sistema Biliar/diagnóstico , Colangiocarcinoma/diagnóstico , Células Neoplásicas Circulantes/patologia , Análise de Célula Única , Idoso , Neoplasias do Sistema Biliar/sangue , Neoplasias do Sistema Biliar/mortalidade , Neoplasias do Sistema Biliar/terapia , Colangiocarcinoma/sangue , Colangiocarcinoma/mortalidade , Colangiocarcinoma/terapia , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Biópsia Líquida/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Critérios de Avaliação de Resposta em Tumores SólidosRESUMO
The presence in the blood of patients with solid tumors of circulating cells expressing both epithelial and leukocyte markers (dual-positive cells, DPcells), has often been reported, though it has never been investigated in detail. A recent study suggested that DPcells are hybrid cells derived from the fusion of tumor cells with macrophages. Such fusion hybrids acquire macrophage-associated features endowing them with accelerated growth, increased motility, enhanced invasion activity and thus, a higher efficiency in metastasis formation. However, no direct evidence proving the tumor origin of circulating DPcells was provided in patients. Here we contribute a review of literature data on DPcells and on the hybrid theory with the aim of putting the current evidence both in a biological and clinical perspective and to generate new hypotheses on the mechanisms underlying tumor progression. To add further biological and clinical context to our literature review, we also report some preliminary data from our laboratory on the identification of DPcells in several solid tumors and confirmation of their malignant genotype, thus classifying them as DP-CTCs.
Assuntos
Biomarcadores Tumorais , Neoplasias/diagnóstico , Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Suscetibilidade a Doenças , Testes Genéticos/métodos , Humanos , Biópsia Líquida/métodos , Neoplasias/etiologiaRESUMO
BACKGROUND & AIMS: In cholangiocarcinoma, early metastatic spread via lymphatic vessels often precludes curative therapies. Cholangiocarcinoma invasiveness is fostered by an extensive stromal reaction, enriched in cancer-associated fibroblasts (CAFs) and lymphatic endothelial cells (LECs). Cholangiocarcinoma cells recruit and activate CAFs by secreting PDGF-D. Herein, we investigated the role of PDGF-D and liver myofibroblasts in promoting lymphangiogenesis in cholangiocarcinoma. METHODS: Human cholangiocarcinoma specimens were immunostained for podoplanin (LEC marker), α-SMA (CAF marker), VEGF-A, VEGF-C, and their cognate receptors (VEGFR2, VEGFR3). VEGF-A and VEGF-C secretion was evaluated in human fibroblasts obtained from primary sclerosing cholangitis explants. Using human LECs incubated with conditioned medium from PDGF-D-stimulated fibroblasts we assessed migration, 3D vascular assembly, transendothelial electric resistance and transendothelial migration of cholangiocarcinoma cells (EGI-1). We then studied the effects of selective CAF depletion induced by the BH3 mimetic navitoclax on LEC density and lymph node metastases in vivo. RESULTS: In cholangiocarcinoma specimens, CAFs and LECs were closely adjacent. CAFs expressed VEGF-A and VEGF-C, while LECs expressed VEGFR2 and VEGFR3. Upon PDGF-D stimulation, fibroblasts secreted increased levels of VEGF-C and VEGF-A. Fibroblasts, stimulated by PDGF-D induced LEC recruitment and 3D assembly, increased LEC monolayer permeability, and promoted transendothelial EGI-1 migration. These effects were all suppressed by the PDGFRß inhibitor, imatinib. In the rat model of cholangiocarcinoma, navitoclax-induced CAF depletion, markedly reduced lymphatic vascularization and reduced lymph node metastases. CONCLUSION: PDGF-D stimulates VEGF-C and VEGF-A production by fibroblasts, resulting in expansion of the lymphatic vasculature and tumor cell intravasation. This critical process in the early metastasis of cholangiocarcinoma may be blocked by inducing CAF apoptosis or by inhibiting the PDGF-D-induced axis. LAY SUMMARY: Cholangiocarcinoma is a highly malignant cancer affecting the biliary tree, which is characterized by a rich stromal reaction involving a dense population of cancer-associated fibroblasts that promote early metastatic spread. Herein, we show that cholangiocarcinoma-derived PDGF-D stimulates fibroblasts to secrete vascular growth factors. Thus, targeting fibroblasts or PDGF-D-induced signals may represent an effective tool to block tumor-associated lymphangiogenesis and reduce the invasiveness of cholangiocarcinoma.
Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Fígado/patologia , Linfangiogênese/efeitos dos fármacos , Linfocinas/metabolismo , Linfocinas/farmacologia , Miofibroblastos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Neoplasias dos Ductos Biliares/patologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Xenoenxertos , Humanos , Mesilato de Imatinib/farmacologia , Masculino , Camundongos , Camundongos SCID , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Endogâmicos F344 , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator C de Crescimento do Endotélio Vascular/biossínteseRESUMO
Cholangiocarcinoma is an aggressive, strongly chemoresistant liver malignancy. Leukemia inhibitory factor (LIF), an IL-6 family cytokine, promotes progression of various carcinomas. To investigate the role of LIF in cholangiocarcinoma, we evaluated the expression of LIF and its receptor (LIFR) in human samples. LIF secretion and LIFR expression were assessed in established and primary human cholangiocarcinoma cell lines. In cholangiocarcinoma cells, we tested LIF effects on proliferation, invasion, stem cell-like phenotype, chemotherapy-induced apoptosis (gemcitabine+cisplatin), expression levels of pro-apoptotic (Bax) and anti-apoptotic (Mcl-1) proteins, with/without PI3K inhibition, and of pSTAT3, pERK1/2, pAKT. LIF effect on chemotherapy-induced apoptosis was evaluated after LIFR silencing and Mcl-1 inactivation.Results show that LIF and LIFR expression were higher in neoplastic than in control cholangiocytes; LIF was also expressed by tumor stromal cells. LIF had no effects on cholangiocarcinoma cell proliferation, invasion, and stemness signatures, whilst it counteracted drug-induced apoptosis. Upon LIF stimulation, decreased apoptosis was associated with Mcl-1 and pAKT up-regulation and abolished by PI3K inhibition. LIFR silencing and Mcl-1 blockade restored drug-induced apoptosis.In conclusion, autocrine and paracrine LIF signaling promote chemoresistance in cholangiocarcinoma by up-regulating Mcl-1 via a novel STAT3- and MAPK-independent, PI3K/AKT-dependent pathway. Targeting LIF signaling may increase CCA responsiveness to chemotherapy.