Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Mov Disord ; 36(8): 1795-1804, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33960523

RESUMO

BACKGROUND: Whole-genome sequencing data are available from several large studies across a variety of diseases and traits. However, massive storage and computation resources are required to use these data, and to achieve sufficient power for discoveries, harmonization of multiple cohorts is critical. OBJECTIVES: The Accelerating Medicines Partnership Parkinson's Disease program has developed a research platform for Parkinson's disease (PD) that integrates the storage and analysis of whole-genome sequencing data, RNA expression data, and clinical data, harmonized across multiple cohort studies. METHODS: The version 1 release contains whole-genome sequencing data derived from 3941 participants from 4 cohorts. Samples underwent joint genotyping by the TOPMed Freeze 9 Variant Calling Pipeline. We performed descriptive analyses of these whole-genome sequencing data using the Accelerating Medicines Partnership Parkinson's Disease platform. RESULTS: The clinical diagnosis of participants in version 1 release includes 2005 idiopathic PD patients, 963 healthy controls, 64 prodromal subjects, 62 clinically diagnosed PD subjects without evidence of dopamine deficit, and 705 participants of genetically enriched cohorts carrying PD risk-associated GBA variants or LRRK2 variants, of whom 304 were affected. We did not observe significant enrichment of pathogenic variants in the idiopathic PD group, but the polygenic risk score was higher in PD both in nongenetically enriched cohorts and genetically enriched cohorts. The population analysis showed a correlation between genetically enriched cohorts and Ashkenazi Jewish ancestry. CONCLUSIONS: We describe the genetic component of the Accelerating Medicines Partnership Parkinson's Disease platform, a solution to democratize data access and analysis for the PD research community. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Doença de Parkinson , Estudos de Coortes , Humanos , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética
2.
JMIR Med Inform ; 5(1): e2, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28213343

RESUMO

BACKGROUND: As one of the several effective solutions for personal privacy protection, a global unique identifier (GUID) is linked with hash codes that are generated from combinations of personally identifiable information (PII) by a one-way hash algorithm. On the GUID server, no PII is permitted to be stored, and only GUID and hash codes are allowed. The quality of PII entry is critical to the GUID system. OBJECTIVE: The goal of our study was to explore a method of checking questionable entry of PII in this context without using or sending any portion of PII while registering a subject. METHODS: According to the principle of GUID system, all possible combination patterns of PII fields were analyzed and used to generate hash codes, which were stored on the GUID server. Based on the matching rules of the GUID system, an error-checking algorithm was developed using set theory to check PII entry errors. We selected 200,000 simulated individuals with randomly-planted errors to evaluate the proposed algorithm. These errors were placed in the required PII fields or optional PII fields. The performance of the proposed algorithm was also tested in the registering system of study subjects. RESULTS: There are 127,700 error-planted subjects, of which 114,464 (89.64%) can still be identified as the previous one and remaining 13,236 (10.36%, 13,236/127,700) are discriminated as new subjects. As expected, 100% of nonidentified subjects had errors within the required PII fields. The possibility that a subject is identified is related to the count and the type of incorrect PII field. For all identified subjects, their errors can be found by the proposed algorithm. The scope of questionable PII fields is also associated with the count and the type of the incorrect PII field. The best situation is to precisely find the exact incorrect PII fields, and the worst situation is to shrink the questionable scope only to a set of 13 PII fields. In the application, the proposed algorithm can give a hint of questionable PII entry and perform as an effective tool. CONCLUSIONS: The GUID system has high error tolerance and may correctly identify and associate a subject even with few PII field errors. Correct data entry, especially required PII fields, is critical to avoiding false splits. In the context of one-way hash transformation, the questionable input of PII may be identified by applying set theory operators based on the hash codes. The count and the type of incorrect PII fields play an important role in identifying a subject and locating questionable PII fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA