RESUMO
In modern stromatolites, mineralization results from a complex interplay between microbial metabolisms, the organic matrix, and environmental parameters. Here, we combined biogeochemical, mineralogical, and microscopic analyses with measurements of metabolic activity to characterize the mineralization processes and products in an emergent (<18 months) hypersaline microbial mat. While the nucleation of Mg silicates is ubiquitous in the mat, the initial formation of a Ca-Mg carbonate lamina depends on (i) the creation of a high-pH interface combined with a major change in properties of the exopolymeric substances at the interface of the oxygenic and anoxygenic photoautotrophic layers and (ii) the synergy between two major players of sulfur cycle, purple sulfur bacteria, and sulfate-reducing bacteria. The repetition of this process over time combined with upward growth of the mat is a possible pathway leading to the formation of a stromatolite.
Assuntos
Chromatiaceae/crescimento & desenvolvimento , Chromatiaceae/metabolismo , Sedimentos Geológicos/microbiologia , Minerais/metabolismo , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Bactérias Redutoras de Enxofre/metabolismoRESUMO
The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-µm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record.
Assuntos
Microbiologia Ambiental , Fósseis , Metais/análise , Microbiota , Salinidade , Bahamas , Técnicas de Química AnalíticaRESUMO
Microbialites are sedimentary deposits formed by the metabolic interactions of microbes and their environment. These lithifying microbial communities represent one of the oldest ecosystems on Earth, yet the molecular mechanisms underlying the function of these communities are poorly understood. In this study, we used comparative metagenomic and metatranscriptomic analyses to characterize the spatial organization of the thrombolites of Highborne Cay, The Bahamas, an actively forming microbialite system. At midday, there were differences in gene expression throughout the spatial profile of the thrombolitic mat with a high abundance of transcripts encoding genes required for photosynthesis, nitrogen fixation and exopolymeric substance production in the upper three mm of the mat. Transcripts associated with denitrification and sulfate reduction were in low abundance throughout the depth profile, suggesting these metabolisms were less active during midday. Comparative metagenomics of the Bahamian thrombolites with other known microbialite ecosystems from across the globe revealed that, despite many shared core pathways, the thrombolites represented genetically distinct communities. This study represents the first time the metatranscriptome of living microbialite has been characterized and offers a new molecular perspective on those microbial metabolisms, and their underlying genetic pathways, that influence the mechanisms of carbonate precipitation in lithifying microbial mat ecosystems.
Assuntos
Metabolismo Energético/genética , Sedimentos Geológicos/microbiologia , Metaboloma/genética , Água do Mar/microbiologia , Transcriptoma/genética , Bahamas , Metagenômica/métodosRESUMO
In this paper, we report the presence of sedimentary microbial ecosystems in wetlands of the Salar de Atacama. These laminated systems, which bind, trap and precipitate mineral include: microbial mats at Laguna Tebenquiche and Laguna La Brava, gypsum domes at Tebenquiche and carbonate microbialites at La Brava. Microbial diversity and key biogeochemical characteristics of both lakes (La Brava and Tebenquiche) and their various microbial ecosystems (non-lithifying mats, flat and domal microbialites) were determined. The composition and abundance of minerals ranged from trapped and bound halite in organic-rich non-lithifying mats to aragonite-dominated lithified flat microbialites and gypsum in lithified domal structures. Pyrosequencing of the V4 region of the 16s rDNA gene showed that Proteobacteria comprised a major phylum in all of the microbial ecosystems studied, with a marked lower abundance in the non-lithifying mats. A higher proportion of Bacteroidetes was present in Tebenquiche sediments compared to La Brava samples. The concentration of pigments, particularly that of Chlorophyll a, was higher in the Tebenquiche than in La Brava. Pigments typically associated with anoxygenic phototrophic bacteria were present in lower amounts. Organic-rich, non-lithifying microbial mats frequently formed snake-like, bulbous structures due to gas accumulation underneath the mat. We hypothesize that the lithified microbialites might have developed from these snake-like microbial mats following mineral precipitation in the surface layer, producing domes with endoevaporitic communities in Tebenquiche and carbonate platforms in La Brava. Whereas the potential role of microbes in carbonate platforms is well established, the contribution of endoevaporitic microbes to formation of gypsum domes needs further investigation.
Assuntos
Bacteroidetes/isolamento & purificação , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Microbiota , Proteobactérias/isolamento & purificação , Áreas Alagadas , Bacteroidetes/genética , Carbonato de Cálcio/análise , Sulfato de Cálcio/análise , Chile , Clorofila/análise , Sedimentos Geológicos/química , Proteobactérias/genética , RNA Ribossômico 16S/genéticaRESUMO
The initial lamination in young, metabolically active Scytonema knobs developing in Storr's Lake (Bahamas) results from the iterative succession of two different stages of microbial growth at the top of this microbialite. Stage 1 is dominated by vertically oriented cyanobacterial filaments and is characterized by a high porosity of the fabric. Stage 2 shows a higher microbial density with the filaments oriented horizontally and with higher carbonate content. The more developed, dense microbial community associated with Stage 2 of the Scytonema knobs rapidly degrades extracellular organic matter (EOM) and coupled to this, precipitates carbonate. The initial nucleation forms high-Mg calcite nanospheroids that progressively replace the EOM. No precipitation is observed within the thick sheath of the Scytonema filaments, possibly because of strong cross-linking of calcium and EOM (forming EOM-Ca-EOM complexes), which renders Ca unavailable for carbonate nucleation (inhibition process). Eventually, organominerals precipitate and form an initial lamina through physicochemical and microbial processes, including high rates of photosynthetic activity that lead to (13) C-enriched DIC available for initial nucleation. As this lamina moves downward by the iterative production of new laminae at the top of the microbialite, increased heterotrophic activity further alters the initial mineral product at depth. Although some rare relic preservation of 'Stage 1-Stage 2' laminae in subfossil knobs exists, the very fine primary lamination is considerably altered and almost completely lost when the knobs develop into larger and more complex morphologies due to the increased accommodation space and related physicochemical and/or biological alteration. Despite considerable differences in microstructure, the emerging ecological model of community succession leading to laminae formation described here for the Scytonema knobs can be applied to the formation of coarse-grained, open marine stromatolites. Therefore, both fine- and coarse-grained extant stromatolites can be used as model systems to understand the formation of microbialites in the fossil record.
Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Lagos/microbiologia , Bahamas , Carbonatos/metabolismo , Compostos Orgânicos/metabolismoRESUMO
Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation.
Assuntos
Bactérias/metabolismo , Carbonato de Cálcio/metabolismo , Sulfatos/metabolismo , Precipitação Química , Microbiologia Ambiental , Concentração de Íons de Hidrogênio , Modelos Biológicos , Modelos Teóricos , OxirreduçãoRESUMO
Thrombolites are unlaminated carbonate build-ups that are formed via the metabolic activities of complex microbial mat communities. The thrombolitic mats of Highborne Cay, Bahamas develop in close proximity (1-2 m) to accreting laminated stromatolites, providing an ideal opportunity for biogeochemical and molecular comparisons of these two distinctive microbialite ecosystems. In this study, we provide the first comprehensive characterization of the biogeochemical activities and microbial diversity of the Highborne Cay thrombolitic mats. Morphological and molecular analyses reveal two dominant mat types associated with the thrombolite deposits, both of which are dominated by bacteria from the taxa Cyanobacteria and Alphaproteobacteria. Diel cycling of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) were measured in all thrombolitic mat types. DO production varied between thrombolitic types and one morphotype, referred to in this study as 'button mats', produced the highest levels among all mat types, including the adjacent stromatolites. Characterization of thrombolite bacterial communities revealed a high bacterial diversity, roughly equivalent to that of the nearby stromatolites, and a low eukaryotic diversity. Extensive phylogenetic overlap between thrombolitic and stromatolitic microbial communities was observed, although thrombolite-specific cyanobacterial populations were detected. In particular, the button mats were dominated by a calcified, filamentous cyanobacterium identified via morphology and 16S rRNA gene sequencing as Dichothrix sp. The distinctive microbial communities and chemical cycling patterns within the thrombolitic mats provide novel insight into the biogeochemical processes related to the lithifying mats in this system, and provide data relevant to understanding microbially induced carbonate biomineralization.
Assuntos
Bactérias/classificação , Biodiversidade , Eucariotos/classificação , Sedimentos Geológicos/microbiologia , Microbiologia do Solo , Bactérias/citologia , Bactérias/genética , Bactérias/isolamento & purificação , Bahamas , Carbono/metabolismo , Análise por Conglomerados , DNA/química , DNA/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/citologia , Eucariotos/genética , Eucariotos/isolamento & purificação , Dados de Sequência Molecular , Oxigênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Homologia de SequênciaRESUMO
Calcified cyanobacterial microfossils are common in carbonate environments through most of the Phanerozoic, but are absent from the marine rock record over the past 65 Myr. There has been long-standing debate on the factors controlling the formation and temporal distribution of these fossils, fostered by the lack of a suitable modern analog. We describe calcified cyanobacteria filaments in a modern marine reef setting at Highborne Cay, Bahamas. Our observations and stable isotope data suggest that initial calcification occurs in living cyanobacteria and is photosynthetically induced. A single variety of cyanobacteria, Dichothrix sp., produces calcified filaments. Adjacent cyanobacterial mats form well-laminated stromatolites, rather than calcified filaments, indicating there can be a strong taxonomic control over the mechanism of microbial calcification. Petrographic analyses indicate that the calcified filaments are degraded during early diagenesis and are not present in well-lithified microbialites. The early diagenetic destruction of calcified filaments at Highborne Cay indicates that the absence of calcified cyanobacteria from periods of the Phanerozoic is likely to be caused by low preservation potential as well as inhibited formation.
Assuntos
Cálcio/análise , Cianobactérias/química , Fósseis , Sedimentos Geológicos/microbiologia , Bahamas , Isótopos de Carbono/análise , Cianobactérias/citologia , Cianobactérias/ultraestrutura , Microscopia , Microscopia Eletrônica de VarreduraRESUMO
The creation of a mathematical simulation model of photosynthetic microbial mats is important to our understanding of key biogeochemical cycles that may have altered the atmospheres and lithospheres of early Earth. A model is presented here as a tool to integrate empirical results from research on hypersaline mats from Baja California Sur (BCS), Mexico into a computational system that can be used to simulate biospheric inputs of trace gases to the atmosphere. The first version of our model, presented here, calculates fluxes and cycling of O(2), sulfide, and dissolved inorganic carbon (DIC) via abiotic components and via four major microbial guilds: cyanobacteria (CYA), sulfate reducing bacteria (SRB), purple sulfur bacteria (PSB) and colorless sulfur bacteria (CSB). We used generalized Monod-type equations that incorporate substrate and energy limits upon maximum rates of metabolic processes such as photosynthesis and sulfate reduction. We ran a simulation using temperature and irradiance inputs from data collected from a microbial mat in Guerrero Negro in BCS (Mexico). Model O(2), sulfide, and DIC concentration profiles and fluxes compared well with data collected in the field mats. There were some model-predicted features of biogeochemical cycling not observed in our actual measurements. For instance, large influxes and effluxes of DIC across the MBGC mat boundary may reveal previously unrecognized, but real, in situ limits on rates of biogeochemical processes. Some of the short-term variation in field-collected mat O(2) was not predicted by MBGC. This suggests a need both for more model sensitivity to small environmental fluctuations for the incorporation of a photorespiration function into the model.
Assuntos
Ecossistema , Sedimentos Geológicos , Modelos Biológicos , Fotossíntese , Cloreto de Sódio , Carbono/metabolismo , Chromatiaceae/crescimento & desenvolvimento , Chromatiaceae/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Escuridão , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Compostos Inorgânicos/metabolismo , Luz , Oxigênio/metabolismo , Sulfetos/metabolismo , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento , Bactérias Redutoras de Enxofre/metabolismoRESUMO
DMSP-consuming bacteria (DCB) were recovered from the body and fecal pellets of the copepod Acartia tonsa (Dana). The most probable number of DCB associated with starved A. tonsa was 9.2x10(2) cells copepod(-1). The abundance of DCB recovered from the copepod body increased to 1.6-2.8x10(4) after the copepod fed on DMSP-containing alga. DCB abundance associated with fecal pellets averaged 1.2x10(4) cells pellet(-1). In enrichment cultures, the DCB grew with a doubling time of 1.1-2.9 days, and consumed DMSP at a rate of 4.5-7.5 fmol cell(-1) day(-1). The apparent DMSP-to-DMS conversion efficiency was 25-41% for DCB from copepod body, and 99% for DCB from fecal pellets. Our study demonstrated that copepods and their fecal pellets may harbour dense populations of DCB, and that the copepod-bacteria coupling represents a novel mechanism for DMSP consumption in the water column.
RESUMO
For three billion years, before the Cambrian diversification of life, laminated carbonate build-ups called stromatolites were widespread in shallow marine seas. These ancient structures are generally thought to be microbial in origin and potentially preserve evidence of the Earth's earliest biosphere. Despite their evolutionary significance, little is known about stromatolite formation, especially the relative roles of microbial and environmental factors in stromatolite accretion. Here we show that growth of modern marine stromatolites represents a dynamic balance between sedimentation and intermittent lithification of cyanobacterial mats. Periods of rapid sediment accretion, during which stromatolite surfaces are dominated by pioneer communities of gliding filamentous cyanobacteria, alternate with hiatal intervals. These discontinuities in sedimentation are characterized by development of surface films of exopolymer and subsequent heterotrophic bacterial decomposition, forming thin crusts of microcrystalline carbonate. During prolonged hiatal periods, climax communities develop, which include endolithic coccoid cyanobacteria. These coccoids modify the sediment, forming thicker lithified laminae. Preservation of lithified layers at depth creates millimetre-scale lamination. This simple model of modern marine stromatolite growth may be applicable to ancient stromatolites.
Assuntos
Carbonatos , Cianobactérias , Biologia Marinha , Microbiologia da Água , Bahamas , Evolução Biológica , Fósseis , Sedimentos GeológicosRESUMO
Several low-molecular-weight sulfonates were added to microbial mat slurries to investigate their effects on sulfate reduction. Instantaneous production of sulfide occurred after taurine and cysteate were added to all of the microbial mats tested. The rates of production in the presence of taurine and cysteate were 35 and 24 microM HS(-) h(-1) in a stromatolite mat, 38 and 36 microM HS(-) h(-1) in a salt pond mat, and 27 and 18 microM HS(-) h(-1) in a salt marsh mat, respectively. The traditionally used substrates lactate and acetate stimulated the rate of sulfide production 3 to 10 times more than taurine and cysteate stimulated the rate of sulfide production in all mats, but when ethanol, glycolate, and glutamate were added to stromatolite mat slurries, the resulting increases were similar to the increases observed with taurine and cysteate. Isethionate, sulfosuccinate, and sulfobenzoate were tested only with the stromatolite mat slurry, and these compounds had much smaller effects on sulfide production. Addition of molybdate resulted in a greater inhibitory effect on acetate and lactate utilization than on sulfonate use, suggesting that different metabolic pathways were involved. In all of the mats tested taurine and cysteate were present in the pore water at nanomolar to micromolar concentrations. An enrichment culture from the stromatolite mat was obtained on cysteate in a medium lacking sulfate and incubated anaerobically. The rate of cysteate consumption by this enrichment culture was 1.6 pmol cell(-1) h(-1). Compared to the results of slurry studies, this rate suggests that organisms with properties similar to the properties of this enrichment culture are a major constituent of the sulfidogenic population. In addition, taurine was consumed at some of highest dilutions obtained from most-probable-number enrichment cultures obtained from stromatolite samples. Based on our comparison of the sulfide production rates found in various mats, low-molecular-weight sulfonates are important sources of C and S in these ecosystems.
Assuntos
Ácidos Sulfônicos/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Ácido Cisteico/metabolismo , Ecossistema , Cinética , Biologia Marinha , Peso Molecular , Oxirredução , Água do Mar/microbiologia , Sulfatos/metabolismo , Sulfetos/metabolismo , Ácidos Sulfônicos/química , Taurina/metabolismoRESUMO
A bacterium, strain BIS-6, that grew aerobically on dimethylsulfoniopropionate (DMSP) was isolated from an intertidal mud sample. Strain BIS-6 quantitatively demethylated DMSP and 3-methiolpropionate to 3-mercaptopropionate. Strain BIS-6 was a versatile methylotroph growing on the osmolytes DMSP and glycine betaine and their methylated degradation products (dimethyl glycine, sarcosine, methylamines, and dimethyl sulfide.
Assuntos
Bactérias Aeróbias/metabolismo , Compostos de Sulfônio/metabolismo , Microbiologia da Água , Betaína/metabolismo , Biodegradação Ambiental , Propionatos/metabolismo , Água do Mar , Compostos de Sulfidrila/metabolismoRESUMO
A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO(2) with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se). Hence, SES-3 can carry out a complete reduction of selenate to Se. Washed cell suspensions of selenate-grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [C]lactate to CO(2) coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m-chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.
RESUMO
A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.
Assuntos
Sulfetos/metabolismo , Thiobacillus/metabolismo , Microbiologia da Água , Aerobiose , Anaerobiose , Biodegradação Ambiental , Água do Mar , Thiobacillus/crescimento & desenvolvimento , Thiobacillus/isolamento & purificaçãoRESUMO
Aerobic degradation of dimethyl sulfide (DMS), previously described for thiobacilli and hyphomicrobia, involves catabolism to sulfide via methanethiol (CH3SH). Methyl groups are sequentially eliminated as HCHO by incorporation of O2 catalyzed by DMS monooxygenase and methanethiol oxidase. H2O2 formed during CH3SH oxidation is destroyed by catalase. We recently isolated Thiobacillus strain ASN-1, which grows either aerobically or anaerobically with denitrification on DMS. Comparative experiments with Thiobacillus thioparus T5, which grows only aerobically on DMS, indicate a novel mechanism for aerobic DMS catabolism by Thiobacillus strain ASN-1. Evidence that both organisms initially attacked the methyl group, rather than the sulfur atom, in DMS was their conversion of ethyl methyl sulfide to ethanethiol. HCHO transiently accumulated during the aerobic use of DMS by T. thioparus but not with Thiobacillus strain ASN-1. Catalase levels in cells grown aerobically on DMS were about 100-fold lower in Thiobacillus strain ASN-1 than in T. thioparus T5, suggesting the absence of H2O2 formation during DMS catabolism. Also, aerobic growth of T. thioparus T5 on DMS was blocked by the catalase inhibitor 3-amino-1,2,4-triazole whereas that of Thiobacillus strain ASN-1 was not. Methyl butyl ether, but not CHCl3, blocked DMS catabolism by T. thioparus T5, presumably by inhibiting DMS monooxygenase and perhaps methanethiol oxidase. In contrast, DMS metabolism by Thiobacillus strain ASN-1 was unaffected by methyl butyl ether but inhibited by CHCl3. DMS catabolism by Thiobacillus strain ASN-1 probably involves methyl transfer to a cobalamin carrier and subsequent oxidation as folate-bound intermediates.
Assuntos
Éteres Metílicos , Sulfetos/metabolismo , Thiobacillus/metabolismo , Aerobiose , Poluentes Atmosféricos/metabolismo , Amitrol (Herbicida)/farmacologia , Biodegradação Ambiental , Catalase/antagonistas & inibidores , Clorofórmio/farmacologia , Transporte de Elétrons , Éteres/farmacologia , Especificidade da Espécie , Thiobacillus/efeitos dos fármacos , Thiobacillus/crescimento & desenvolvimentoRESUMO
Rhodopseudomonas sp. strain BB1, isolated from a coastal marine sediment, immediately metabolized mercaptomalate when grown on mercaptomalate. Sulfide was detected as an intermediate. Extracts of cells grown on mercaptomalate converted mercaptomalate or 3-mercaptopropionate to equimolar amounts of sulfide and either fumarate or acrylate, respectively. Rhodopseudomonas sp. strain BB1 gave higher growth yields on mercaptomalate than on sulfide or malate, consistent with metabolism of the carbon chain of the thiol and the liberated sulfide; i.e., the organic thiol was an organolithotrophic substrate. In contrast, Thiocapsa roseopersicina, isolated previously from a marine microbial mat, had similar growth yields on sulfide, mercaptomalate, or 3-mercaptopropionate, with fumarate or acrylate accumulation from the thiols. T. roseopersicina did not grow photoorganotrophically on fumarate or acrylate, and the thiols were only a source of sulfide for photolithoautotrophic growth.
RESUMO
The fate of dimethylsulfoniopropionate (DMSP), a major sulfonium compound in marine ecosystems, was examined in Microcoleus chthonoplastes-dominated microbial mats. Chemical decomposition of DMSP was observed under laboratory conditions at pH values higher than 10.0. pH profiles measured in situ showed that these highly alkaline conditions occurred in microbial mats. Axenic cultures of M. chthonoplastes contained 37.3 mumol of DMSP g of protein, which was partially liberated when the cells were subjected to an osmotic shock. DMSP-amended mat slurries showed a rapid turnover of this compound. The addition of glutaraldehyde blocked DMSP decrease, indicating biological consumption. Populations of potential dimethyl sulfide consumers were found in the top 10 mm of the mat.
RESUMO
The concentrations of the volatile organic sulfur compounds methanethiol, dimethyl disulfide, and dimethyl sulfide (DMS) and the viable population capable of DMS utilization in laminated microbial ecosystems were evaluated. Significant levels of DMS and dimethyl disulfide (maximum concentrations of 220 and 24 nmol cm3 of sediment-1, respectively) could be detected only at the top 20 mm of the microbial mat, whereas methanethiol was found only at depth horizons from 20 to 50 mm (maximum concentration of 42 nmol cm3 of sediment-1). DMS concentrations in the surface layer doubled after cold hydrolysis of its precursor, dimethylsulfoniopropionate. Most-probable-number counts revealed 2.2 x 10(5) cells cm3 of sediment-1, in the 0- to 5-mm depth horizon, capable of growth on DMS as the sole source of energy. An obligately chemolithoautotrophic bacillus designated strain T5 was isolated from the top layer of the marine sediment. Continuous culture studies in which DMS was the growth-limiting substrate revealed a maximum specific growth rate of 0.10 h-1 and a saturation constant of 90 mumol liter-1 for aerobic growth on this substrate.
Assuntos
Enxofre/metabolismo , Thiobacillus/metabolismo , Dissulfetos/metabolismo , Metilação , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismoRESUMO
Anoxic salt marsh sediments were amended with dl-methionine and dimethylsulfoniopropionate (DMSP). Microbial metabolism of methionine yielded methane thiol (MSH) as the major volatile organosulfur product, with the formation of lesser amounts of dimethylsulfide (DMS). Biological transformation of DMSP resulted in the rapid release of DMS and only small amounts of MSH. Experiments with microbial inhibitors indicated that production of MSH from methionine was carried out by procaryotic organisms, probably sulfate-reducing bacteria. Methane-producing bacteria did not metabolize methionine. The involvement of specific groups of organisms in DMSP hydrolysis could not be determined with the inhibitors used, because DMSP was hydrolyzed in all samples except those which were autoclaved. Unamended sediment slurries, prepared from Spartina alterniflora sediments, contained significant (1 to 10 muM) concentrations of DMS. Endogenous methylated sulfur compounds and those produced from added methionine and DMSP were consumed by sediment microbes. Both sulfate-reducing and methane-producing bacteria were involved in DMS and MSH consumption. Methanogenesis was stimulated by the volatile organosulfur compounds released from methionine and DMSP. However, apparent competition for these compounds exists between methanogens and sulfate reducers. At low (1 muM) concentrations of methionine, the terminal S-methyl group was metabolized almost exclusively to CO(2) and only small amounts of CH(4). At higher (>100 muM) concentrations of methionine, the proportion of the methyl-sulfur group converted to CH(4) increased. The results of this study demonstrate that methionine and DMSP are potential precursors of methylated sulfur compounds in anoxic sediments and that the microbial community is capable of metabolizing volatile methylated sulfur compounds.