Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 133: 102585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485435

RESUMO

Cyanobacteria can reach high densities in eutrophic lakes, which may cause problems due to their potential toxin production. Several methods are in use to prevent, control or mitigate harmful cyanobacterial blooms. Treatment of blooms with low concentrations of hydrogen peroxide (H2O2) is a promising emergency method. However, effects of H2O2 on cyanobacteria, eukaryotic phytoplankton and zooplankton have mainly been studied in controlled cultures and mesocosm experiments, while much less is known about the effectiveness and potential side effects of H2O2 treatments on entire lake ecosystems. In this study, we report on three different lakes in the Netherlands that were treated with average H2O2 concentrations ranging from 2 to 5 mg L-1 to suppress cyanobacterial blooms. Effects on phytoplankton and zooplankton communities, on cyanotoxin concentrations, and on nutrient availability in the lakes were assessed. After every H2O2 treatment, cyanobacteria drastically declined, sometimes by more than 99%, although blooms of Dolichospermum sp., Aphanizomenon sp., and Planktothrix rubescens were more strongly suppressed than a Planktothrix agardhii bloom. Eukaryotic phytoplankton were not significantly affected by the H2O2 additions and had an initial advantage over cyanobacteria after the treatment, when ample nutrients and light were available. In all three lakes, a new cyanobacterial bloom developed within several weeks after the first H2O2 treatment, and in two lakes a second H2O2 treatment was therefore applied to again suppress the cyanobacterial population. Rotifers strongly declined after most H2O2 treatments except when the H2O2 concentration was ≤ 2 mg L-1, whereas cladocerans were only mildly affected and copepods were least impacted by the added H2O2. In response to the treatments, the cyanotoxins microcystins and anabaenopeptins were released from the cells into the water column, but disappeared after a few days. We conclude that lake treatments with low concentrations of H2O2 can be a successful tool to suppress harmful cyanobacterial blooms, but may negatively affect some of the zooplankton taxa in lakes. We advise pre-tests prior to the treatment of lakes to define optimal treatment concentrations that kill the majority of the cyanobacteria and to minimize potential side effects on non-target organisms. In some cases, the pre-tests may discourage treatment of the lake.


Assuntos
Cianobactérias , Fitoplâncton , Animais , Peróxido de Hidrogênio , Lagos/microbiologia , Zooplâncton , Ecossistema , Cianobactérias/fisiologia
3.
Harmful Algae ; 128: 102482, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714576

RESUMO

Rising atmospheric CO2 can intensify harmful cyanobacterial blooms in eutrophic lakes. Worldwide, these blooms are an increasing environmental concern. Low concentrations of hydrogen peroxide (H2O2) have been proposed as a short-term but eco-friendly approach to selectively mitigate cyanobacterial blooms. However, sensitivity of cyanobacteria to H2O2 can vary depending on the available resources. To find out how cyanobacteria respond to H2O2 under elevated CO2, Microcystis aeruginosa PCC 7806 was cultured in chemostats with nutrient-replete medium under C-limiting and C-replete conditions (150 ppm and 1500 ppm CO2, respectively). Microcystis chemostats exposed to high CO2 showed higher cell densities, biovolumes, and microcystin contents, but a lower photosynthetic efficiency and pH compared to the cultures grown under low CO2. Subsamples of the chemostats were treated with different concentrations of H2O2 (0-10 mg·L-1 H2O2) in batch cultures under two different light intensities (15 and 100 µmol photons m-2·s-1) and the response in photosynthetic vitality was monitored during 24 h. Results showed that Microcystis was more resistant to H2O2 at elevated CO2 than under carbon-limited conditions. Both low and high CO2-adapted cells were more sensitive to H2O2 at high light than at low light. Microcystins (MCs) leaked out of the cells of cultures exposed to 2-10 mg·L-1 H2O2, while the sum of intra- and extracellular MCs decreased. Although both H2O2 and CO2 concentrations in lakes vary in response to many factors, these results imply that it may become more difficult to suppress cyanobacterial blooms in eutrophic lakes when atmospheric CO2 concentrations continue to rise.


Assuntos
Cianobactérias , Microcystis , Peróxido de Hidrogênio , Dióxido de Carbono/farmacologia , Técnicas de Cultura Celular por Lotes
4.
Science ; 378(6620): eadd9959, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36356131

RESUMO

Hellweger et al. (Reports, 27 May 2022, pp. 1001) predict that phosphorus limitation will increase concentrations of cyanobacterial toxins in lakes. However, several molecular, physiological, and ecological mechanisms assumed in their models are poorly supported or contradicted by other studies. We conclude that their take-home message that phosphorus load reduction will make Lake Erie more toxic is seriously flawed.


Assuntos
Toxinas Bacterianas , Lagos , Microcystis , Fósforo , Monitoramento Ambiental , Lagos/química , Lagos/microbiologia , Fósforo/deficiência , Microcystis/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade
5.
Water Res ; 225: 119169, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191528

RESUMO

Addition of hydrogen peroxide (H2O2) is a promising method to acutely suppress cyanobacterial blooms in lakes. However, a reliable H2O2 risk assessment to identify potential effects on non-target species is currently hampered by a lack of appropriate ecotoxicity data. The aim of the present study was therefore to quantify the responses of a wide diversity of freshwater phytoplankton, zooplankton and macroinvertebrates to H2O2 treatments of cyanobacterial blooms. To this end, we applied a multifaceted approach. First, we investigated the 24-h toxicity of H2O2 to three cyanobacteria (Planktothrix agardhii, Microcystis aeruginosa, Anabaena sp.) and 23 non-target species (six green algae, eight zooplankton and nine macroinvertebrate taxa), using EC50 values based on photosynthetic yield for phytoplankton and LC50 values based on mortality for the other organisms. The most sensitive species included all three cyanobacterial taxa, but also the rotifer Brachionus calyciflores and the cladocerans Ceriodaphnia dubia and Daphnia pulex. Next, the EC50 and LC50 values obtained from the laboratory toxicity tests were used to construct a species sensitivity distribution (SSD) for H2O2. Finally, the species predicted to be at risk by the SSD were compared with the responses of phytoplankton, zooplankton and macroinvertebrates to two whole-lake treatments with H2O2. The predictions of the laboratory-based SSD matched well with the responses of the different taxa to H2O2 in the lake. The first lake treatment, with a relatively low H2O2 concentration and short residence time, successfully suppressed cyanobacteria without major effects on non-target species. The second lake treatment had a higher H2O2 concentration with a longer residence time, which resulted in partial suppression of cyanobacteria, but also in a major collapse of rotifers and decreased abundance of small cladocerans. Our results thus revealed a trade-off between the successful suppression of cyanobacteria at the expense of adverse effects on part of the zooplankton community. This delicate balance strongly depends on the applied H2O2 dosage and may affect the decision whether to treat a lake or not.


Assuntos
Cianobactérias , Rotíferos , Animais , Zooplâncton/fisiologia , Fitoplâncton , Peróxido de Hidrogênio , Cianobactérias/fisiologia , Lagos/microbiologia
6.
Ecol Evol ; 12(3): e8675, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35261753

RESUMO

While eutrophication remains one of the main pressures acting on freshwater ecosystems, the prevalence of anthropogenic and nature-induced stochastic pulse perturbations is predicted to increase due to climate change. Despite all our knowledge on the effects of eutrophication and stochastic events operating in isolation, we know little about how eutrophication may affect the response and recovery of aquatic ecosystems to pulse perturbations. There are multiple ways in which eutrophication and pulse perturbations may interact to induce potentially synergic changes in the system, for instance, by increasing the amount of nutrients released after a pulse perturbation. Here, we performed a controlled press and pulse perturbation experiment using mesocosms filled with natural lake water to address how eutrophication modulates the phytoplankton response to sequential mortality pulse perturbations; and what is the combined effect of press and pulse perturbations on the resistance and resilience of the phytoplankton community. Our experiment showed that eutrophication increased the absolute scale of the chlorophyll-a response to pulse perturbations but did not change the proportion of the response relative to its pre-event condition (resistance). Moreover, the capacity of the community to recover from pulse perturbations was significantly affected by the cumulative effect of sequential pulse perturbations but not by eutrophication itself. By the end of the experiment, some mesocosms could not recover from pulse perturbations, irrespective of the trophic state induced by the press perturbation. While not resisting or recovering any less from pulse perturbations, phytoplankton communities from eutrophying systems showed chlorophyll-a levels much higher than non-eutrophying ones. This implies that the higher absolute response to stochastic pulse perturbations in a eutrophying system may increase the already significant risks for water quality (e.g., algal blooms in drinking water supplies), even if the relative scale of the response to pulse perturbations between eutrophying and non-eutrophying systems remains the same.

7.
Microorganisms ; 9(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34361929

RESUMO

Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little is known about the impacts of these H2O2 treatments on other members of the microbial community. In this study, we investigated changes in microbial community composition during two lake treatments with low H2O2 concentrations (target: 2.5 mg L-1) and in two series of controlled lake incubations. The results show that the H2O2 treatments effectively suppressed the dominant cyanobacteria Aphanizomenon klebahnii, Dolichospermum sp. and, to a lesser extent, Planktothrix agardhii. Microbial community analysis revealed that several Proteobacteria (e.g., Alteromonadales, Pseudomonadales, Rhodobacterales) profited from the treatments, whereas some bacterial taxa declined (e.g., Verrucomicrobia). In particular, the taxa known to be resistant to oxidative stress (e.g., Rheinheimera) strongly increased in relative abundance during the first 24 h after H2O2 addition, but subsequently declined again. Alpha and beta diversity showed a temporary decline but recovered within a few days, demonstrating resilience of the microbial community. The predicted functionality of the microbial community revealed a temporary increase of anti-ROS defenses and glycoside hydrolases but otherwise remained stable throughout the treatments. We conclude that the use of low concentrations of H2O2 to suppress cyanobacterial blooms provides a short-term pulse disturbance but is not detrimental to lake microbial communities and their ecosystem functioning.

8.
Sci Rep ; 11(1): 7147, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785764

RESUMO

Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they influence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantified the coverage of various BCM-types and estimated the biomass of key herbivorous fish functional groups. Using remote video observations, we compared fish herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fish (opportunistically) consuming BCMs. Samples of different BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fish biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were significantly reduced on BCM-dominated substratum, and no fish were unambiguously observed consuming BCMs. Seven different BCM-types were identified, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacific reefs.


Assuntos
Cianobactérias/fisiologia , Peixes/fisiologia , Proliferação Nociva de Algas , Herbivoria/fisiologia , Microalgas/fisiologia , Animais , Recifes de Corais , Microbiota/fisiologia
9.
Environ Microbiol ; 23(5): 2404-2419, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587811

RESUMO

Oceanographic studies have shown that heterotrophic bacteria can protect marine cyanobacteria against oxidative stress caused by hydrogen peroxide (H2 O2 ). Could a similar interspecific protection play a role in freshwater ecosystems? In a series of laboratory experiments and two lake treatments, we demonstrate that freshwater cyanobacteria are sensitive to H2 O2 but can be protected by less-sensitive species such as green algae. Our laboratory results show that green algae degrade H2 O2 much faster than cyanobacteria. Consequently, the cyanobacterium Microcystis was able to survive at higher H2 O2 concentrations in mixtures with the green alga Chlorella than in monoculture. Interestingly, even the lysate of destructed Chlorella was capable to protect Microcystis, indicating a two-component H2 O2 degradation system in which Chlorella provided antioxidant enzymes and Microcystis the reductants. The level of interspecific protection provided to Microcystis depended on the density of Chlorella. These findings have implications for the mitigation of toxic cyanobacterial blooms, which threaten the water quality of many eutrophic lakes and reservoirs worldwide. In several lakes, H2 O2 has been successfully applied to suppress cyanobacterial blooms. Our results demonstrate that high densities of green algae can interfere with these lake treatments, as they may rapidly degrade the added H2 O2 and thereby protect the bloom-forming cyanobacteria.


Assuntos
Chlorella , Cianobactérias , Microcystis , Ecossistema , Peróxido de Hidrogênio , Lagos , Estresse Oxidativo
10.
Chemosphere ; 274: 129770, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33549883

RESUMO

In the past decades, the intensity and duration of cyanobacterial blooms are increasing due to anthropogenic factors. These phenomena worry drinking water companies and water managers because cyanobacteria produce a diverse range of cyanotoxins, which can cause liver, digestive and neurological diseases. The main exposure routes for humans are the consumption of drinking water that has not been effectively treated and the recreational use of polluted waters. For risk assessment and to conduct studies on large-scale occurrence, the development of reliable but simple, sensitive and cost-effective analytical approaches able to cover a wide range of cyanotoxins is essential. Additionally, the determination of intracellular and extracellular toxins separately is advantageous for risk management. To the best of our knowledge, this is the first time that a method for the multi-class determination of cyanotoxins in fresh water, which is able to separately report intra- and extracellular toxins, meet the criteria of simplicity (not requiring multiple sample preparation procedures or time-consuming steps) and it is based on highly specific high resolution mass spectrometry (potential for wide screening and retrospective analysis). Matrix effects, trueness and precision met general validation criteria for a group of nine cyanotoxins, including anatoxins, cylindrospermopsin and microcystins. Considering a 50 mL sample, the method quantification limits were within the range of 8-45 ng L-1 and 25-129 ng L-1 for intra- and extracellular cyanotoxins, respectively. Anatoxin-a, cylindrospermopsin and some microcystins were found in three out of four Dutch lakes included in the study, at concentrations up to 52 µg L-1.


Assuntos
Cianobactérias , Microcistinas , Cromatografia Líquida de Alta Pressão , Água Doce , Humanos , Espectrometria de Massas , Microcistinas/análise , Estudos Retrospectivos
11.
Harmful Algae ; 99: 101916, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33218441

RESUMO

Application of low concentrations of hydrogen peroxide (H2O2) is a relatively new and promising method to selectively suppress harmful cyanobacterial blooms, while minimizing effects on eukaryotic organisms. However, it is still unknown how nutrient limitation affects the sensitivity of cyanobacteria to H2O2. In this study, we compare effects of H2O2 on the microcystin-producing cyanobacterium Microcystis PCC 7806 under light-limited but nutrient-replete conditions, nitrogen (N) limitation and phosphorus (P) limitation. Microcystis was first grown in chemostats to acclimate to these different experimental conditions, and subsequently transferred to batch cultures where they were treated with a range of H2O2 concentrations (0-10 mg L-1) while exposed to high light (100 µmol photons m-2 s-1) or low light (15 µmol photons m-2 s-1). Our results show that, at low light, N- and P-limited Microcystis were less sensitive to H2O2 than light-limited but nutrient-replete Microcystis. A significantly higher expression of the genes encoding for anti-oxidative stress enzymes (2-cys-peroxiredoxin, thioredoxin A and type II peroxiredoxin) was observed prior to and after the H2O2 treatment for both N- and P-limited Microcystis, which may explain their increased resistance against H2O2. At high light, Microcystis was more sensitive to H2O2 than at low light, and differences in the decline of the photosynthetic yield between nutrient-replete and nutrient-limited Microcystis exposed to H2O2 were less pronounced. Leakage of microcystin was stronger and faster from nutrient-replete than from N- and P-limited Microcystis. Overall, this study provides insight in the sensitivity of harmful cyanobacteria to H2O2 under various environmental conditions.


Assuntos
Cianobactérias , Microcystis , Peróxido de Hidrogênio , Nutrientes , Fotossíntese
12.
13.
J Environ Manage ; 271: 110948, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778268

RESUMO

Climate change not only intensifies eutrophication and enhances the rainfall, but also elevates the contents of greenhouse gases, which can further increase the intensity and frequency of extreme precipitation events. The effectivity of phytoremediation of urban wastewaters by water hyacinths under an extreme rainfall event (up to 380 mm d-1) was investigated using self-designed fabrications with six flow rates (2-15 m3 d-1) in situ on pilot scale for 30 days. The results suggest that water hyacinths had high N and P removal capacities even under adverse conditions such as low dissolved oxygen concentrations (DO, <1 mg L-1) and high ammonium concentrations (NH4+-N, >7 mg L-1). Specifically, the highest removal yields of N and P were 13.14 ± 0.47 g N·m-2·d-1 and 2.12 ± 0.04 g P·m-2·d-1, respectively. The results indicate that water hyacinths can be used for water treatment to reduce the amounts of NH4+-N, dissolved organic nitrogen (DON) and phosphate (PO43-) even during extreme precipitation events. Moreover, DO increased due to wet deposition, runoff and surface flows during the extreme rainfall event, resulting in shifts between nitrification and denitrification processes which significantly altered nitrogen forms in urban wastewater. Results of this study suggest that water hyacinths could be recommended as a cost-effective and eco-friendly technology for urban wastewater phytoremediation in areas suffering from frequent extreme precipitation events.


Assuntos
Eichhornia , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Nitrogênio/análise , Águas Residuárias
14.
Toxins (Basel) ; 12(1)2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906135

RESUMO

Hydrogen peroxide (H2O2) can be used as an emergency method to selectively suppress cyanobacterial blooms in lakes and drinking water reservoirs. However, it is largely unknown how environmental parameters alter the effectiveness of H2O2 treatments. In this study, the toxic cyanobacterial strain Microcystis aeruginosa PCC 7806 was treated with a range of H2O2 concentrations (0 to 10 mg/L), while being exposed to different light intensities and light colors. H2O2 treatments caused a stronger decline of the photosynthetic yield in high light than in low light or in the dark, and also a stronger decline in orange than in blue light. Our results are consistent with the hypothesis that H2O2 causes major damage at photosystem II (PSII) and interferes with PSII repair, which makes cells more sensitive to photoinhibition. Furthermore, H2O2 treatments caused a decrease in cell size and an increase in extracellular microcystin concentrations, indicative of leakage from disrupted cells. Our findings imply that even low H2O2 concentrations of 1-2 mg/L can be highly effective, if cyanobacteria are exposed to high light intensities. We therefore recommend performing lake treatments during sunny days, when a low H2O2 dosage is sufficient to suppress cyanobacteria, and may help to minimize impacts on non-target organisms.


Assuntos
Cianobactérias/efeitos dos fármacos , Eutrofização/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Luz , Cor , Cianobactérias/ultraestrutura , Lagos , Microcistinas/metabolismo , Microcystis/efeitos dos fármacos , Microcystis/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Luz Solar
15.
Nat Rev Microbiol ; 16(8): 471-483, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29946124

RESUMO

Cyanobacteria can form dense and sometimes toxic blooms in freshwater and marine environments, which threaten ecosystem functioning and degrade water quality for recreation, drinking water, fisheries and human health. Here, we review evidence indicating that cyanobacterial blooms are increasing in frequency, magnitude and duration globally. We highlight species traits and environmental conditions that enable cyanobacteria to thrive and explain why eutrophication and climate change catalyse the global expansion of cyanobacterial blooms. Finally, we discuss management strategies, including nutrient load reductions, changes in hydrodynamics and chemical and biological controls, that can help to prevent or mitigate the proliferation of cyanobacterial blooms.


Assuntos
Mudança Climática , Cianobactérias/fisiologia , Ecossistema , Eutrofização , Água Doce/microbiologia , Água do Mar/microbiologia
16.
Sci Rep ; 6: 28821, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27353576

RESUMO

Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.


Assuntos
Amônia/metabolismo , Antozoários/metabolismo , Eutrofização , Fosfatos/metabolismo , Poluentes Químicos da Água/metabolismo , Amônia/análise , Animais , Recifes de Corais , Curaçao , Cinética , Nitrogênio/análise , Nitrogênio/metabolismo , Fosfatos/análise , Fósforo/análise , Fósforo/metabolismo , Água do Mar/análise , Poluentes Químicos da Água/análise
17.
Sci Rep ; 6: 23248, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27003279

RESUMO

Turf algae increasingly dominate benthic communities on coral reefs. Given their abundance and high dissolved organic carbon (DOC) release rates, turf algae are considered important contributors to the DOC pool on modern reefs. The release of photosynthetically fixed carbon as DOC generally, but not always, increases with increased light availability. Nutrient availability was proposed as an additional factor to explain these conflicting observations. To address this proposed but untested hypothesis, we documented the interactive contributions of light and nutrient availability on the release of DOC by turf algae. DOC release rates and oxygen production were quantified in incubation experiments at two light levels (full and reduced light) and two nutrient treatments (natural seawater and enriched seawater). In natural seawater, DOC release at full light was four times higher than at reduced light. When nutrients were added, DOC release rates at both light levels were similar to the natural seawater treatment at full light. Our results therefore show that low light in combination with low nutrient availability reduces the release of DOC by turf algae and that light and nutrient availability interactively determine DOC release rates by this important component of Caribbean reef communities.


Assuntos
Carbono/análise , Clorófitas/fisiologia , Água do Mar/química , Animais , Região do Caribe , Recifes de Corais , Ecossistema , Luz , Oxigênio/análise , Fotossíntese
18.
Harmful Algae ; 54: 145-159, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-28073473

RESUMO

Climate change is likely to stimulate the development of harmful cyanobacterial blooms in eutrophic waters, with negative consequences for water quality of many lakes, reservoirs and brackish ecosystems across the globe. In addition to effects of temperature and eutrophication, recent research has shed new light on the possible implications of rising atmospheric CO2 concentrations. Depletion of dissolved CO2 by dense cyanobacterial blooms creates a concentration gradient across the air-water interface. A steeper gradient at elevated atmospheric CO2 concentrations will lead to a greater influx of CO2, which can be intercepted by surface-dwelling blooms, thus intensifying cyanobacterial blooms in eutrophic waters. Bloom-forming cyanobacteria display an unexpected diversity in CO2 responses, because different strains combine their uptake systems for CO2 and bicarbonate in different ways. The genetic composition of cyanobacterial blooms may therefore shift. In particular, strains with high-flux carbon uptake systems may benefit from the anticipated rise in inorganic carbon availability. Increasing temperatures also stimulate cyanobacterial growth. Many bloom-forming cyanobacteria and also green algae have temperature optima above 25°C, often exceeding the temperature optima of diatoms and dinoflagellates. Analysis of published data suggests that the temperature dependence of the growth rate of cyanobacteria exceeds that of green algae. Indirect effects of elevated temperature, like an earlier onset and longer duration of thermal stratification, may also shift the competitive balance in favor of buoyant cyanobacteria while eukaryotic algae are impaired by higher sedimentation losses. Furthermore, cyanobacteria differ from eukaryotic algae in that they can fix dinitrogen, and new insights show that the nitrogen-fixation activity of heterocystous cyanobacteria can be strongly stimulated at elevated temperatures. Models and lake studies indicate that the response of cyanobacterial growth to rising CO2 concentrations and elevated temperatures can be suppressed by nutrient limitation. The greatest response of cyanobacterial blooms to climate change is therefore expected to occur in eutrophic and hypertrophic lakes.


Assuntos
Dióxido de Carbono/metabolismo , Cianobactérias/fisiologia , Aquecimento Global , Eutrofização , Lagos
19.
Harmful Algae ; 54: 223-238, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-28073479

RESUMO

In early August 2014, the municipality of Toledo, OH (USA) issued a 'do not drink' advisory on their water supply directly affecting over 400,000 residential customers and hundreds of businesses (Wilson, 2014). This order was attributable to levels of microcystin, a potent liver toxin, which rose to 2.5µgL-1 in finished drinking water. The Toledo crisis afforded an opportunity to bring together scientists from around the world to share ideas regarding factors that contribute to bloom formation and toxigenicity, bloom and toxin detection as well as prevention and remediation of bloom events. These discussions took place at an NSF- and NOAA-sponsored workshop at Bowling Green State University on April 13 and 14, 2015. In all, more than 100 attendees from six countries and 15 US states gathered together to share their perspectives. The purpose of this review is to present the consensus summary of these issues that emerged from discussions at the Workshop. As additional reports in this special issue provide detailed reviews on many major CHAB species, this paper focuses on the general themes common to all blooms, such as bloom detection, modeling, nutrient loading, and strategies to reduce nutrients.


Assuntos
Cianobactérias/fisiologia , Monitoramento Ambiental/métodos , Proliferação Nociva de Algas , Lagos/microbiologia , China , Eutrofização , Great Lakes Region
20.
Front Microbiol ; 6: 714, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257710

RESUMO

Experiments with different phytoplankton densities in lake samples showed that a high biomass increases the rate of hydrogen peroxide (HP) degradation and decreases the effectiveness of HP in the selective suppression of dominant cyanobacteria. However, selective application of HP requires usage of low doses only, accordingly this defines the limits for use in lake mitigation. To acquire insight into the impact of HP on other phytoplankton species, we have followed the succession of three phytoplankton groups in lake samples that were treated with different concentrations of HP using a taxa-specific fluorescence emission test. This fast assay reports relatively well on coarse changes in the phytoplankton community; the measured data and the counts from microscopical analysis of the phytoplankton matched quite well. The test was used to pursue HP application in a Planktothrix agardhii-dominated lake sample and displayed a promising shift in the phytoplankton community in only a few weeks. From a low-diversity community, a change to a status with a significantly higher diversity and increased abundance of eukaryotic phytoplankton species was established. Experiments in which treated samples were re-inoculated with original P. agardhii-rich lake water demonstrated prolonged suppression of cyanobacteria, and displayed a remarkable stability of the newly developed post-HP treatment state of the phytoplankton community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA