Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Med ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902546

RESUMO

Investigational therapeutics that target toxic species of α-synuclein (αSyn) aim to slow down or halt disease progression in patients with Parkinson's disease (PD). Here this 44-week, randomized, placebo-controlled, double-blind, single-center phase 1 study investigated safety, tolerability and immunogenicity of UB-312, an active immunotherapeutic targeting pathological αSyn, in patients with PD. The primary outcome measures were adverse event frequency and change in anti-αSyn antibody titers in blood and cerebrospinal fluid (CSF). Exploratory outcomes were changes in clinical scales and biomarker-based target engagement as measured by seed amplification assays. Twenty patients were randomized 7:3 (UB-312:placebo) into 300/100/100 µg or 300/300/300 µg (weeks 1, 5 and 13) intramuscular prime-boost dose groups. Safety was similar across groups; adverse events were mostly mild and transient. Two patients experienced three serious adverse events in total, one possibly treatment related; all resolved without sequalae. Anti-αSyn antibodies in serum from 12/13 and CSF from 5/13 patients who received three UB-312 doses confirmed immunogenicity. Mean serum titers (in log-dilution factor) increased from baseline by 1.398 and 1.354, and peaked at week 29 at 2.520 and 2.133, for 300/100/100 µg and 300/300/300 µg, respectively. CSF titers were 0 at baseline and were 0.182 and 0.032 at week 21, respectively. Exploratory analyses showed no statistical differences in clinical scales but a significant reduction of αSyn seeds in CSF of a subset of UB-312-treated patients. These data support further UB-312 development. ClinicalTrials.gov: NCT04075318 .

2.
Clin Transl Sci ; 16(8): 1408-1420, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177855

RESUMO

Increased leucine-rich repeat kinase 2 (LRRK2) kinase activity is an established risk factor for Parkinson's disease (PD), and several LRRK2 kinase inhibitors are in clinical development as potential novel disease-modifying therapeutics. This biomarker characterization study explored within- and between-subject variability of multiple LRRK2 pathway biomarkers (total LRRK2 [tLRRK2], phosphorylation of the serine 935 (Ser935) residue on LRRK2 [pS935], phosphorylation of Rab10 [pRab10], and total Rab10 [tRab10]) in different biological sources (whole blood, peripheral blood mononuclear cells [PBMCs], neutrophils) as candidate human target engagement and pharmacodynamic biomarkers for implementation in phase I/II pharmacological studies of LRRK2 inhibitors. PD patients with a LRRK2 mutation (n = 6), idiopathic PD patients (n = 6), and healthy matched control subjects (n = 10) were recruited for repeated blood and cerebrospinal fluid (CSF) sampling split over 2 days. Within-subject variability (geometric coefficient of variation [CV], %) of these biomarkers was lowest in whole blood and neutrophils (range: 12.64%-51.32%) and considerably higher in PBMCs (range: 34.81%-273.88%). Between-subject variability displayed a similar pattern, with relatively lower variability in neutrophils (range: 61.30%-66.26%) and whole blood (range: 44.94%-123.11%), and considerably higher variability in PBMCs (range: 189.60%-415.19%). Group-level differences were observed with elevated mean pRab10 levels in neutrophils and a reduced mean pS935/tLRRK2 ratio in PBMCs in PD LRRK2-mutation carriers compared to healthy controls. These findings suggest that the evaluated biomarkers and assays could be used to verify pharmacological mechanisms of action and help explore the dose-response of LRRK2 inhibitors in early-phase clinical studies. In addition, comparable α-synuclein aggregation in CSF was observed in LRRK2-mutation carriers compared to idiopathic PD patients.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Leucina/metabolismo , Leucócitos Mononucleares/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Biomarcadores/metabolismo
3.
Mov Disord ; 38(3): 386-398, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807624

RESUMO

BACKGROUND: Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising therapeutic approach for the treatment of Parkinson's disease (PD). OBJECTIVE: The aim of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the potent, selective, CNS-penetrant LRRK2 inhibitor BIIB122 (DNL151) in healthy participants and patients with PD. METHODS: Two randomized, double-blind, placebo-controlled studies were completed. The phase 1 study (DNLI-C-0001) evaluated single and multiple doses of BIIB122 for up to 28 days in healthy participants. The phase 1b study (DNLI-C-0003) evaluated BIIB122 for 28 days in patients with mild to moderate PD. The primary objectives were to investigate the safety, tolerability, and plasma pharmacokinetics of BIIB122. Pharmacodynamic outcomes included peripheral and central target inhibition and lysosomal pathway engagement biomarkers. RESULTS: A total of 186/184 healthy participants (146/145 BIIB122, 40/39 placebo) and 36/36 patients (26/26 BIIB122, 10/10 placebo) were randomized/treated in the phase 1 and phase 1b studies, respectively. In both studies, BIIB122 was generally well tolerated; no serious adverse events were reported, and the majority of treatment-emergent adverse events were mild. BIIB122 cerebrospinal fluid/unbound plasma concentration ratio was ~1 (range, 0.7-1.8). Dose-dependent median reductions from baseline were observed in whole-blood phosphorylated serine 935 LRRK2 (≤98%), peripheral blood mononuclear cell phosphorylated threonine 73 pRab10 (≤93%), cerebrospinal fluid total LRRK2 (≤50%), and urine bis (monoacylglycerol) phosphate (≤74%). CONCLUSIONS: At generally safe and well-tolerated doses, BIIB122 achieved substantial peripheral LRRK2 kinase inhibition and modulation of lysosomal pathways downstream of LRRK2, with evidence of CNS distribution and target inhibition. These studies support continued investigation of LRRK2 inhibition with BIIB122 for the treatment of PD. © 2023 Denali Therapeutics Inc and The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Leucócitos Mononucleares/metabolismo , Voluntários Saudáveis , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Biomarcadores/metabolismo , Mutação
4.
Br J Clin Pharmacol ; 89(3): 1105-1114, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36214216

RESUMO

AIM: To assess viral clearance, pharmacokinetics, tolerability and symptom evolution following ensovibep administration in symptomatic COVID-19 outpatients. METHODS: In this open-label, first-in-patient study a single dose of either 225 mg (n = 6) or 600 mg (n = 6) of ensovibep was administered intravenously in outpatients with mild-to-moderate COVID-19 symptoms. Pharmacokinetic profiles were determined (90-day period). Pharmacodynamic assessments consisted of viral load (qPCR and cultures) and symptom questionnaires. Immunogenicity against ensovibep and SARS-CoV-2-neutralizing activity were determined. Safety and tolerability were assessed throughout a 13-week follow-up. RESULTS: Both doses showed similar pharmacokinetics (first-order) with mean half-lives of 14 (SD 5.0) and 13 days (SD 5.7) for the 225- and 600-mg groups, respectively. Pharmacologically relevant serum concentrations were maintained in all subjects for at least 2 weeks postdose, regardless of possible immunogenicity against ensovibep. Viral load changes from baseline at day 15 were 5.1 (SD 0.86) and 5.3 (SD 2.2) log10 copies/mL for the 225- and 600-mg doses, respectively. COVID-19 symptom scores decreased from 10.0 (SD 4.1) and 11.3 (SD 4.0) to 1.6 (SD 3.1) and 3.3 (SD 2.4) in the first week for the 225- and 600-mg groups, respectively. No anti-SARS-CoV-2 neutralizing activity was present predose and all patients had SARS-CoV-2 antibodies at day 91. Adverse events were of mild-to-moderate severity, transient and self-limiting. CONCLUSION: Single-dose intravenous administration of 225 or 600 mg of ensovibep appeared safe and well tolerated in patients with mild-to-moderate COVID-19. Ensovibep showed favourable pharmacokinetics in patients and the pharmacodynamic results warrant further research in a larger phase 2/3 randomized-controlled trail.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteínas Recombinantes de Fusão , Anticorpos Antivirais , Método Duplo-Cego
5.
Clin Transl Sci ; 15(8): 2010-2023, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35649245

RESUMO

RIPK1 is a master regulator of inflammatory signaling and cell death and increased RIPK1 activity is observed in human diseases, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). RIPK1 inhibition has been shown to protect against cell death in a range of preclinical cellular and animal models of diseases. SAR443060 (previously DNL747) is a selective, orally bioavailable, central nervous system (CNS)-penetrant, small-molecule, reversible inhibitor of RIPK1. In three early-stage clinical trials in healthy subjects and patients with AD or ALS (NCT03757325 and NCT03757351), SAR443060 distributed into the cerebrospinal fluid (CSF) after oral administration and demonstrated robust peripheral target engagement as measured by a reduction in phosphorylation of RIPK1 at serine 166 (pRIPK1) in human peripheral blood mononuclear cells compared to baseline. RIPK1 inhibition was generally safe and well-tolerated in healthy volunteers and patients with AD or ALS. Taken together, the distribution into the CSF after oral administration, the peripheral proof-of-mechanism, and the safety profile of RIPK1 inhibition to date, suggest that therapeutic modulation of RIPK1 in the CNS is possible, conferring potential therapeutic promise for AD and ALS, as well as other neurodegenerative conditions. However, SAR443060 development was discontinued due to long-term nonclinical toxicology findings, although these nonclinical toxicology signals were not observed in the short duration dosing in any of the three early-stage clinical trials. The dose-limiting toxicities observed for SAR443060 preclinically have not been reported for other RIPK1-inhibitors, suggesting that these toxicities are compound-specific (related to SAR443060) rather than RIPK1 pathway-specific.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Proteína Serina-Treonina Quinases de Interação com Receptores , Doença de Alzheimer/tratamento farmacológico , Esclerose Lateral Amiotrófica/tratamento farmacológico , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
6.
Transpl Int ; 35: 10269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651879

RESUMO

Kidney transplant recipients (KTRs) are at increased risk of severe COVID-19 disease compared to the general population. This is partly driven by their use of immunosuppressive therapy, which influences inflammatory responses and viral loads. Current guidelines suggest to withdraw mycophenolate while calcineurin inhibitors are often continued during a COVID-19 infection. However, clinical signs of calcineurin toxicity have been described in multiple COVID-19 positive KTRs. In this report we describe the course of tacrolimus exposure prior to, during, and post COVID-19 in observations from three clinical cases as well as four KTRs from a controlled trial population. We postulate inflammation driven downregulation of the CYP3A metabolism as a potential mechanism for higher tacrolimus exposure. To mitigate the risk of tacrolimus overexposure and toxicity therapeutic drug monitoring is recommended in KTRs with COVID-19 both in the in-, out-patient and home monitoring setting.


Assuntos
COVID-19 , Transplante de Rim , Regulação para Baixo , Humanos , Inflamação/etiologia , Transplante de Rim/efeitos adversos , Tacrolimo/efeitos adversos
7.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562713

RESUMO

The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically review the use of pharmacological and mechanistic biomarkers in early phase clinical trials of DMTs in NDDs, and propose a roadmap for providing early proof-of-concept to increase R&D productivity in this field of high unmet medical need. A literature search was performed on published early phase clinical trials aimed at the evaluation of NDD DMT compounds using MESH terms in PubMed. Publications were selected that reported an early phase clinical trial with NDD DMT compounds between 2010 and November 2020. Attention was given to the reported use of pharmacodynamic (mechanistic and physiological response) biomarkers. A total of 121 early phase clinical trials were identified, of which 89 trials (74%) incorporated one or multiple pharmacodynamic biomarkers. However, only 65 trials (54%) used mechanistic (target occupancy or activation) biomarkers to demonstrate target engagement in humans. The most important categories of early phase mechanistic and response biomarkers are discussed and a roadmap for incorporation of a robust biomarker strategy for early phase NDD DMT clinical trials is proposed. As our understanding of NDDs is improving, there is a rise in potentially disease-modifying treatments being brought to the clinic. Further increasing the rational use of mechanistic biomarkers in early phase trials for these (targeted) therapies can increase R&D productivity with a quick win/fast fail approach in an area that has seen a nearly 100% failure rate to date.


Assuntos
Biomarcadores/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Ensaios Clínicos como Assunto , Progressão da Doença , Humanos , Doenças Neurodegenerativas/metabolismo , Estudo de Prova de Conceito , Falha de Tratamento
8.
Br J Clin Pharmacol ; 87(3): 837-844, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32668047

RESUMO

During the outbreak of the COVID-19 pandemic many clinical trials were abruptly halted. Measures to contain the pandemic are currently taking effect and societies in general and healthcare systems in particular are considering how to return to normalcy. This opens up the discussion when and how clinical trials should be restarted while the COVID-19 pandemic has not yet resolved, and what should happen in case of a resurgence of the virus in the coming months. This article uses the four ethical principles framework as a structured approach to come to a set of practical, ethically grounded guidelines for halting and relaunching clinical trials during the COVID-19 pandemic. The framework applied provides a structured approach for all clinical trials stakeholders and thereby prevents unclear reasoning in a complex situation. While it is essential to prevent the virus from resurging and focus on developing a COVID-19 treatment as soon as possible, it is just as important to our society that we continue developing new drugs for other conditions. In this article we argue that the situation for clinical trials is not essentially different from the pre-COVID-19 era and that an overcautious approach will have negative consequences.


Assuntos
COVID-19 , Ensaios Clínicos como Assunto/ética , Ensaios Clínicos como Assunto/métodos , Análise Ética , Pandemias , Humanos , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA