Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28765157

RESUMO

Ciliary motility is crucial for the development and health of many organisms. Motility depends on the coordinated activity of multiple dynein motors arranged in a precise pattern on the outer doublet microtubules. Although significant progress has been made in elucidating the composition and organization of the dyneins, a comprehensive understanding of dynein regulation is lacking. Here, we focus on two conserved signaling complexes located at the base of the radial spokes. These include the I1/f inner dynein arm associated with radial spoke 1 and the calmodulin- and spoke-associated complex and the nexin-dynein regulatory complex associated with radial spoke 2. Current research is focused on understanding how these two axonemal hubs coordinate and regulate the dynein motors and ciliary motility.


Assuntos
Axonema/fisiologia , Cílios/fisiologia , Dineínas/metabolismo , Animais , Humanos , Movimento
2.
Cytoskeleton (Hoboken) ; 71(10): 573-86, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25252184

RESUMO

To determine mechanisms of assembly of ciliary dyneins, we focused on the Chlamydomonas inner dynein arm, I1 dynein, also known as dynein f. I1 dynein assembles in the cytoplasm as a 20S complex similar to the 20S I1 dynein complex isolated from the axoneme. The intermediate chain subunit, IC140 (IDA7), and heavy chains (IDA1, IDA2) are required for 20S I1 dynein preassembly in the cytoplasm. Unlike I1 dynein derived from the axoneme, the cytoplasmic 20S I1 complex will not rebind I1-deficient axonemes in vitro. To test the hypothesis that I1 dynein is transported to the distal tip of the cilia for assembly in the axoneme, we performed cytoplasmic complementation in dikaryons formed between wild-type and I1 dynein mutant cells. Rescue of I1 dynein assembly in mutant cilia occurred first at the distal tip and then proceeded toward the proximal axoneme. Notably, in contrast to other combinations, I1 dynein assembly was significantly delayed in dikaryons formed between ida7 and ida3. Furthermore, rescue of I1 dynein assembly required new protein synthesis in the ida7 × ida3 dikaryons. On the basis of the additional observations, we postulate that IDA3 is required for 20S I1 dynein transport. Cytoplasmic complementation in dikaryons using the conditional kinesin-2 mutant, fla10-1 revealed that transport of I1 dynein is dependent on kinesin-2 activity. Thus, I1 dynein complex assembly depends upon IFT for transport to the ciliary distal tip prior to docking in the axoneme.


Assuntos
Axonema/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Transporte Biológico , Cinesinas/metabolismo , Modelos Biológicos , Mutação , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA