Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 173(Pt 1): 113363, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803661

RESUMO

This study presents a sustainable and cost-effective method for preserving the bioactivity of phenolic compounds in olive leaves (OLE) during their application. The extraction and nanoencapsulation of OLE were performed in a single-step process using a rotor-stator system with zein as the encapsulating agent. The nanoprecipitation step was carried out using an aqueous sodium caseinate solution, resulting in spherical particles with an average diameter of about 640 nm, as confirmed by Transmission Electron Microscopy. Thermal characterization showed that the produced nanoparticles were more thermally stable than free OLE until 250 °C, and FTIR spectra indicated effective interaction between the phenolic compounds and zein. Antioxidant activity was evaluated using TBARS, DPPH, ABTS, and FRAP assays, with results showing that encapsulated OLE had lower antioxidant activity than free OLE. The best antioxidant capacity results were determined by TBARS assay, with IC50 results equal to 43 and 103 µgOLE/mL for free and encapsulated OLE, respectively. No anti-inflammatory potential was detected for both samples using the RAW 264.7 model, and only free OLE showed cytotoxic activity against lung cancer and gastric carcinoma. Encapsulated and free OLE were used as antioxidants in soy, palm, and palm kernel oils and compared to BHT using Rancimat. The Schaal Oven Test was also performed, and the PARAFAC chemometric method analyzed the UV-Vis spectra, which revealed high stability of the oil when 300 mg or the nanoparticles were added per kg oil. Results suggested that zein-encapsulated olive leaf antioxidants can improve the oxidative stability of edible oils.


Assuntos
Olea , Zeína , Antioxidantes/análise , Olea/química , Zeína/química , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Fenóis/análise , Óleos/análise , Folhas de Planta/química , Estresse Oxidativo
2.
Food Chem ; 307: 125523, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639572

RESUMO

Lutein is a bioactive found in dark leafy vegetables that may be used as a nutraceutical agent in foodstuff and an inhibitor of key enzymes of the human body such as those involved in the cholinergic system. However, its high hydrophobicity leads to low bioavailability and must be overcome if lutein is to be added in foods. The objective of this study was to evaluate the influence of nanoencapsulated lutein in the activity of the acetylcholinesterase enzyme. The in vitro study was carried out using water in order to evaluate the impact of encapsulation on the hydrophilicity of lutein. In vitro assays showed that lutein, both free and nanoencapsulated, presented a mixed-type inhibition behavior, and encapsulated lutein was able to inhibit acetylcholinesterase activity even in an aqueous medium. Inhibition was also showed by the in silico docking results which show that lutein interacted with the pocket region of the enzyme.


Assuntos
Acetilcolinesterase/metabolismo , Cápsulas/química , Luteína/química , Simulação de Acoplamento Molecular , Nanopartículas/química , Acetilcolinesterase/química , Sítios de Ligação , Suplementos Nutricionais/análise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Luteína/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA