Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Clin Exp Hepatol ; 14(1): 101265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38076367

RESUMO

Background and aims: Bacterial cholangitis is a common complication in patients with ischemic type biliary lesions and/or anastomotic strictures after liver transplantation (LTX). Patients frequently need antibiotics and endoscopic retrograde cholangiography (ERC) to improve the bile flow. Antibiotic treatment is based on findings in standard microbiological cultivation (SMC) of bile. However, the cultivation techniques are limited to a subset of bacteria easy-to-cultivate. Therefore, the aim of our study was to evaluate the value of next generation sequencing as an additional diagnostic tool to SMC in ischemic type biliary lesions and/or anastomotic strictures. Methods: We sequenced the V1-V2 region of the 16S rRNA gene in 242 stored bile samples in patients after LTX and compared the results with findings of SMC. SMC was performed in n = 135 (56%) fresh bile samples in addition to NGS. SMC was part of the clinical routine in these patients. Results: NGS detected bacterial genera in bile samples more often than SMC (P = 5.42 × 10-74). SMC showed insufficient discovery of bacterial genera compared to NGS with better performance in patients receiving antibiotics prior to ERC. SMC missed many bacterial genera detected by NGS. Conclusions: NGS was more sensitive in detecting bacteria in bile than SMC, no clinical parameters could be used to improve discovery rates in SMC and many genera were missed by SMC. Therefore, NGS should be used in a combined approach with SMC for improved diagnostics to achieve more specific and targeted antibiotic treatments.

2.
Microbiome ; 11(1): 269, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037086

RESUMO

BACKGROUND: Ileal pouch-anal anastomosis (IPAA) is the standard of care after total proctocolectomy for ulcerative colitis (UC). Around 50% of patients will experience pouchitis, an idiopathic inflammatory condition. Antibiotics are the backbone of treatment of pouchitis; however, antibiotic-resistant pouchitis develops in 5-10% of those patients. It has been shown that fecal microbiota transplantation (FMT) is an effective treatment for UC, but results for FMT antibiotic-resistant pouchitis are inconsistent. METHODS: To uncover which metabolic activities were transferred to the recipients during FMT and helped the remission, we performed a longitudinal case study of the gut metatranscriptomes from three patients and their donors. The patients were treated by two to three FMTs, and stool samples were analyzed for up to 140 days. RESULTS: Reduced expression in pouchitis patients compared to healthy donors was observed for genes involved in biosynthesis of amino acids, cofactors, and B vitamins. An independent metatranscriptome dataset of UC patients showed a similar result. Other functions including biosynthesis of butyrate, metabolism of bile acids, and tryptophan were also much lower expressed in pouchitis. After FMT, these activities transiently increased, and the overall metatranscriptome profiles closely mirrored those of the respective donors with notable fluctuations during the subsequent weeks. The levels of the clinical marker fecal calprotectin were concordant with the metatranscriptome data. Faecalibacterium prausnitzii represented the most active species contributing to butyrate synthesis via the acetyl-CoA pathway. Remission occurred after the last FMT in all patients and was characterized by a microbiota activity profile distinct from donors in two of the patients. CONCLUSIONS: Our study demonstrates the clear but short-lived activity engraftment of donor microbiota, particularly the butyrate biosynthesis after each FMT. The data suggest that FMT triggers shifts in the activity of patient microbiota towards health which need to be repeated to reach critical thresholds. As a case study, these insights warrant cautious interpretation, and validation in larger cohorts is necessary for generalized applications. In the long run, probiotics with high taxonomic diversity consisting of well characterized strains could replace FMT to avoid the costly screening of donors and the risk of transferring unwanted genetic material. Video Abstract.


Assuntos
Colite Ulcerativa , Microbiota , Pouchite , Humanos , Pouchite/terapia , Pouchite/diagnóstico , Pouchite/microbiologia , Transplante de Microbiota Fecal , Antibacterianos/uso terapêutico , Fezes/microbiologia , Colite Ulcerativa/cirurgia , Butiratos/análise
3.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L480-L492, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802219

RESUMO

A chronic proinflammatory milieu (inflamm-aging) is observed in the elderly and associated with poorer prognosis in acute lung injury (ALI). Gut microbiome-derived short-chain fatty acids (SCFAs) are known to have immunomodulatory capabilities, but their function in the gut-lung axis in aging is poorly understood. Here, we analyzed the gut microbiome and its impact on inflammatory signaling in the aging lung and tested the effects of SCFAs in young (3 mo) and old (18 mo) mice that received either drinking water with a mixture of each 50 mM acetate, butyrate, and propionate for 2 wk or water alone. ALI was induced by intranasal lipopolysaccharide (LPS; n = 12/group) administration. Controls (n = 8/group) received saline. Fecal pellets were sampled for gut microbiome analysis before and after LPS/saline treatment. The left lung lobe was collected for stereology and right lung lobes for cytokine and gene expression analysis, inflammatory cell activation, and proteomics. Different gut microbial taxa, such as Bifidobacterium, Faecalibaculum, and Lactobacillus correlated positively with pulmonary inflammation in aging, suggesting an impact on inflamm-aging in the gut-lung axis. The supplementation of SCFAs reduced inflamm-aging, oxidative stress, metabolic alteration, and enhanced activation of myeloid cells in the lungs of old mice. The enhanced inflammatory signaling in ALI of old mice was also reduced by SCFA treatment. In summary, the study provides new evidence that SCFAs play a beneficial role in the gut-lung axis of the aging organism by reducing pulmonary inflamm-aging and ameliorating enhanced severity of ALI in old mice.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Ácidos Graxos Voláteis , Envelhecimento , Pulmão/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico
4.
Eur J Neurol ; 30(11): 3581-3594, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36593694

RESUMO

BACKGROUND AND PURPOSE: The role of the gut microbiome in the pathogenesis of Parkinson disease (PD) is under intense investigation, and the results presented are still very heterogeneous. These discrepancies arise not only from the highly heterogeneous pathology of PD, but also from widely varying methodologies at all stages of the workflow, from sampling to final statistical analysis. The aim of the present work is to harmonize the workflow across studies to reduce the methodological heterogeneity and to perform a pooled analysis to account for other sources of heterogeneity. METHODS: We performed a systematic review to identify studies comparing the gut microbiota of PD patients to healthy controls. A workflow was designed to harmonize processing across all studies from bioinformatics processing to final statistical analysis using a Bayesian random-effects meta-analysis based on individual patient-level data. RESULTS: The results show that harmonizing workflows minimizes differences between statistical methods and reveals only a small set of taxa being associated with the pathogenesis of PD. Increased shares of the genera Akkermansia and Bifidobacterium and decreased shares of the genera Roseburia and Faecalibacterium were most characteristic for PD-associated microbiota. CONCLUSIONS: Our study summarizes evidence that reduced levels of butyrate-producing taxa in combination with possible degradation of the mucus layer by Akkermansia may promote intestinal inflammation and reduced permeability of the gut mucosal layer. This may allow potentially pathogenic metabolites to transit and enter the enteric nervous system.

5.
Gut Microbes ; 14(1): 2149019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36416760

RESUMO

The bacteria-derived short-chain fatty acids (SCFAs) butyrate and propionate play important (distinct) roles in health and disease, and understanding the ecology of respective bacteria on a community-wide level is a top priority in microbiome research. Applying sequence data (metagenomics and 16S rRNA gene) to predict SCFAs production in vitro and in vivo, a clear split between butyrate- and propionate-forming bacteria was detected with only very few taxa exhibiting pathways for the production of both SCFAs. After in vitro growth of fecal communities from distinct donors (n = 8) on different substrates (n = 7), abundances of bacteria exhibiting pathways correlated with respective SCFA concentrations, in particular in the case of butyrate. For propionate, correlations were weaker, indicating that its production is less imprinted into the core metabolism compared with butyrate-forming bacteria. Longitudinal measurements in vivo (n = 5 time-points from 20 subjects) also revealed a correlation between abundances of pathway-carrying bacteria and concentrations of the two SCFAs. Additionally, lower bacterial cell concentrations, together with higher stool moisture, promoted overall bacterial activity (measured by flow cytometry and coverage patterns of metagenome-assembled genomes) that led to elevated SCFA concentrations with over-proportional levels of butyrate. Predictions on pathway abundances based on 16S rRNA gene data using our in-house database worked well, yielding similar results as metagenomic-based analyses. Our study indicates that stimulating growth of butyrate- and propionate-producing bacteria directly leads to more production of those compounds, which is governed by two functionally distinct bacterial groups facilitating the development of precision intervention strategies targeting either metabolite.


Assuntos
Microbioma Gastrointestinal , Humanos , Butiratos/metabolismo , Propionatos/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis/metabolismo , Bactérias
6.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36233002

RESUMO

Little is known regarding the interplay between microbiota and pancreas functions in humans as investigations are usually limited to distal sites, namely the analyses of fecal samples. The aim of this study was to investigate both ileal and fecal microbiota in response to pancreatic enzyme replacement therapy (PERT) in a porcine model of exocrine pancreatic insufficiency (EPI). PERT was stopped for ten days in ileo-cecal fistulated minipigs with experimentally induced EPI (n = 8) and ileal digesta as well as fecal samples were obtained before withdrawal, during withdrawal and after the reintroduction of PERT. Profound community changes occurred three days after enzyme omission and were maintained throughout the withdrawal phase. A reduction in α-diversity together with relative abundance changes in several taxa, in particular increases in Bifidobacteria (at both sites) and Lactobacilli (only feces) were observed. Overall, dysbiosis events from the ileum had accumulating effects in distal parts of the gastrointestinal tract with additional alterations occurring only in the colon. Changes were reversible after continuing PERT, and one week later, bacterial communities resembled those at baseline. Our study demonstrates the rapid and profound impacts of enzyme withdrawal in bacterial communities, contributing to our understanding of the interplay between pancreas function and microbiota.


Assuntos
Insuficiência Pancreática Exócrina , Microbiota , Animais , Bactérias , Terapia de Reposição de Enzimas , Insuficiência Pancreática Exócrina/tratamento farmacológico , Fezes/microbiologia , Humanos , Íleo , Pâncreas , Suínos , Porco Miniatura
7.
PLoS One ; 17(9): e0275087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129948

RESUMO

In preterm and term infants who require intermediate or intensive care Methicillin-resistant Staphylococcus aureus (MRSA) infection can lead to significant morbidity. In this study MRSA colonization and infection were assessed in a mixed tertiary neonatal intensive and intermediate care unit in Germany over an 8-year period (2013-2020). We investigated patient-related factors, associated with nosocomial MRSA acquisition, and we discuss our infection control concept for MRSA. Of 3488 patients treated during the study period, 24 were MRSA positive patients, corresponding to 26 patient hospital stays. The incidence was 0.7 MRSA patients per 100 patients. The incidence density was 0.4 MRSA patient hospital stays per 1000 patient days. Twelve patients (50%) acquired MRSA in the hospital. One patient developed a hospital acquired MRSA bloodstream infection 9 days after birth (i.e., 0.03% of all patients on the ward during the study period). A total of 122 patients had to be screened to detect one MRSA positive patient. In a logistic regression model, the use of 3rd generation intravenous cephalosporin (cefotaxim) was associated with nosocomial MRSA acquisition compared with matched control patients who did not acquire MRSA. In sum, the burden of MRSA colonization and infection in the ward was low during the study period. A comprehensive infection control concept that included microbiologic colonization screening, prospective infection surveillance together with isolation and emphasis on basic hygiene measures is essential to handle MRSA in this specialized setting.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Cefotaxima , Cefalosporinas , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Humanos , Lactente , Recém-Nascido , Controle de Infecções , Estudos Prospectivos , Estudos Retrospectivos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/prevenção & controle
8.
Front Nutr ; 9: 915082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873446

RESUMO

Background: Interpretation of results from diet-induced-obesity (DIO) studies critically depends on control conditions. Grain-based chows are optimized for rodent nutrition but do not match the defined composition of purified diets used for DIO, severely limiting the comparability. Purified control diets are recommended but often contain high starch and only minor fiber amounts. It is unknown whether this composition leads to metabolic alterations compared with chow and whether the addition of refined fibers at the expense of starch affects these changes. Methods: In this experiment, 6-week-old C57BL/6N mice were fed (i) a conventional purified control diet (high-starch, low-fiber; Puri-starch), (ii) an alternative, custom-made purified control diet containing pectin and inulin (medium-starch, higher-fiber; Puri-fiber), or (iii) grain-based chow for 30 weeks (N = 8-10). Results: Puri-starch feeding resulted in significantly elevated levels of plasma insulin (p = 0.004), cholesterol (p < 0.001), and transaminases (AST p = 0.002, ALT p = 0.001), hepatic de novo lipogenesis and liver steatosis, and an altered gut microbiota composition compared with chow-fed mice. In contrast, Puri-fiber exerted only minor effects on systemic parameters and liver lipid homeostasis, and promoted a distinct gut microbiota composition. Conclusion: Carbohydrate-rich purified diets trigger a metabolic status possibly masking pathological effects of nutrients under study, restricting its use as control condition. The addition of refined fibers is suited to create purified, yet physiological control diets for DIO research.

9.
Front Immunol ; 13: 847171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355997

RESUMO

Adenosine synthase A (AdsA) is a key virulence factor of Staphylococcus aureus, a dangerous microbe that causes fatal diseases in humans. Together with staphylococcal nuclease, AdsA generates deoxyadenosine (dAdo) from neutrophil extracellular DNA traps thereby igniting caspase-3-dependent cell death in host immune cells that aim at penetrating infectious foci. Powered by a multi-technological approach, we here illustrate that the enzymatic activity of AdsA in abscess-mimicking microenvironments is not restricted to the biogenesis of dAdo but rather comprises excessive biosynthesis of deoxyguanosine (dGuo), a cytotoxic deoxyribonucleoside generated by S. aureus to eradicate macrophages of human and animal origin. Based on a genome-wide CRISPR-Cas9 knock-out screen, we further demonstrate that dGuo-induced cytotoxicity in phagocytes involves targeting of the mammalian purine salvage pathway-apoptosis axis, a signaling cascade that is concomitantly stimulated by staphylococcal dAdo. Strikingly, synchronous targeting of this route by AdsA-derived dGuo and dAdo boosts macrophage cell death, indicating that S. aureus multiplexes death-effector deoxyribonucleosides to maximize intra-host survival. Overall, these data provide unique insights into the cunning lifestyle of a deadly pathogen and may help to design therapeutic intervention strategies to combat multidrug-resistant staphylococci.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Desoxiadenosinas/farmacologia , Mamíferos/metabolismo , Neutrófilos , Staphylococcus/metabolismo
10.
Liver Int ; 42(5): 1070-1083, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152539

RESUMO

This study aims to characterize the biliary microbiome as neglected factor in patients with ischaemic-type biliary lesions (ITBL) after liver transplantation. Therefore, the V1-V2 region of the 16S rRNA gene was sequenced in 175 bile samples. Samples from patients with anastomotic strictures (AS) served as controls. Multivariate analysis and in silico metagenomics were applied cross-sectionally and longitudinally. The microbial community differed significantly between ITBL and AS in terms of alpha and beta diversity. Both, antibiotic treatment and stenting were associated independently with differences in the microbial community structure. In contrast to AS, in ITBL stenting was associated with pronounced differences in the biliary microbiome, whereas no differences associated with antibiotic treatment could be observed in ITBL contrasting the pronounced differences found in AS. Bacterial pathways involved in the production of antibacterial metabolites were increased in ITBL with antibiotic treatment. After liver transplantation, the biliary tract harbours a complex microbial community with significant differences between ITBL and AS. Fundamental changes in the microbial community in ITBL can be achieved with biliary stenting. However, the effect of antibiotic treatment in ITBL was minimal. Therefore, antibiotics should be administered wisely in order to reduce emerging resistance of the biliary microbiome towards external antibiotics.


Assuntos
Sistema Biliar , Microbiota , Antibacterianos/uso terapêutico , Humanos , Isquemia , RNA Ribossômico 16S
11.
Comput Struct Biotechnol J ; 20: 508-520, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35070172

RESUMO

The quantification of richness within a sample-either measured as the number of observed species or approximated by estimation-is a common first step in microbiome studies and is known to be highly dependent on sequencing depth, which itself is highly variable between samples. Rarefaction curves serve as a tool to investigate this dependency and it is often argued that after rarefying data-sub-sampling to an equal sequencing depth-richness estimates no longer depend on sequencing depth. However, the estimation of richness from data obtained by high throughput sequencing methods and processed by current bioinformatics pipelines may be subject to various sources of variation related to sequencing depth. Those that may confound inference based on richness estimates and cannot be solved by sub-sampling. We investigated how pipeline settings in DADA2 and deblur affect estimates of richness and showed that the use of rarefaction and sub-sampling is inappropriate when default pipeline settings are applied. Furthermore, we showed how independent sample-wise processing established spurious correlations between sequencing depth and richness estimations in data produced by DADA2 and how this problem can be solved by a pooled processing approach.

12.
J Pharm Anal ; 11(4): 523-528, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34513129

RESUMO

Trimethylamine-N-oxide (TMAO) has emerged as a potential biomarker for atherosclerosis and the development of cardiovascular diseases (CVDs). Although several clinical studies have shown striking associations of TMAO levels with atherosclerosis and CVDs, TMAO determinations are not clinical routine yet. The current methodology relies on isotope-labeled internal standards, which adds to pre-analytical complexity and costs for the quantification of TMAO and its precursors carnitine, betaine or choline. Here, we report a liquid chromatography-tandem mass spectrometry based method that is fast (throughput up to 240 samples/day), consumes low sample volumes (e.g., from a finger prick), and does not require isotope-labeled standards. We circumvented the analytical problem posed by the presence of endogenous TMAO and its precursors in human plasma by using an artificial plasma matrix for calibration. We cross-validated the results obtained using an artificial matrix with those using mouse plasma matrix and demonstrated that TMAO, carnitine, betaine and choline were accurately quantified in 'real-life' human plasma samples from healthy volunteers, obtained either from a finger prick or from venous puncture. Additionally, we assessed the stability of samples stored at -20 °C and room temperature. Whereas all metabolites were stable at -20 °C, increasing concentrations of choline were determined when stored at room temperature. Our method will facilitate the establishment of TMAO as a routine clinical biomarker in hematology in order to assess the risk for CVDs development, or to monitor disease progression and intervention effects.

13.
mSystems ; 6(5): e0094521, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34519520

RESUMO

The gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) is linked to an increased risk for cardiovascular diseases. Trimethylamine (TMA), which is subsequently oxidized to TMAO in the liver, is formed by intestinal bacteria via distinct biochemical routes from dietary precursors that are enriched in animal product-based foods. To get a full picture of the entire process of the diet > gut microbiota > TMAO axis, we quantified potential TMA-forming gut bacteria and plasma metabolites using gene-targeted assays and targeted metabolomics on a subsample (n = 425) of a German population-based cohort study. We specifically compared persons reporting daily meat intake with those that rarely or never consume meat. While meat intake did not predict TMAO plasma levels in our study, two major bacterial TMA-forming pathways were linked to the metabolite's concentration. Furthermore, advancing age was strongly associated with TMAO. Construction of a structural equation model allowed us to disentangle the different routes that promote higher TMAO levels with increasing age, demonstrating, for the first time, a functional role of gut microbiota in the process, where specific food items augmented abundances of TMA-forming bacteria that were associated with higher TMAO plasma concentrations. Analyses stratified by age showed an association between carotid intima-media thickness and TMAO only in individuals >65 of age, indicating that this group is particularly affected by the metabolite. IMPORTANCE Many cohort studies have investigated the link between diet and plasma TMAO levels, reporting incongruent results, while gut microbiota were only recently included into analyses. In these studies, taxonomic data were recorded that are not a good proxy for TMA formation, as specific members of various taxa exhibit genes catalyzing this reaction, demanding function-based technologies for accurate quantification of TMA-synthesizing bacteria. Using this approach, we demonstrated that abundances of the main components leading to TMAO formation, i.e., TMA precursors and TMA-forming bacteria, are uncoupled and not governed by the same (dietary) factors. Results emphasize that all levels leading to TMA(O) formation should be considered for accurate risk assessment, rejecting the simple view that diets rich in TMA precursors directly lead to increased plasma levels of this hazardous compound. The results can assist in developing strategies to reduce TMAO levels, specifically in the elderly, who are prone to TMAO-associated diseases.

14.
Gut Microbes ; 13(1): 1946367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34369304

RESUMO

Emerging research evidence has established the critical role of the gut-liver axis in the development of alcohol-associated liver disease (ALD). The present study employed 16S rRNA gene and whole genome shotgun (WGS) metagenomic analysis in combination with a revised microbial dataset to comprehensively detail the butyrate-producing microbial communities and the associated butyrate metabolic pathways affected by chronic ethanol feeding. Specifically, the data demonstrated that a decrease in several butyrate-producing bacterial genera belonging to distinct families within the Firmicutes phyla was a significant component of ethanol-induced dysbiosis. WGS analysis of total bacterial genomes encompassing butyrate synthesizing pathways provided the functional characteristics of the microbiome associated with butyrate synthesis. The data revealed that in control mice microbiome, the acetyl-coenzyme A (CoA) butyrate synthesizing pathway was the most prevalent and was significantly and maximally decreased by chronic ethanol feeding. Further WGS analysis i) validated the ethanol-induced decrease in the acetyl-CoA pathway by identifying the decrease in two critical genes but - (butyryl-CoA: acetate CoA transferase) and buk - (butyrate kinase) that encode the terminal condensing enzymes required for converting butyryl-CoA to butyrate and ii) detection of specific taxa of butyrate-producing bacteria containing but and buk genes. Notably, the administration of tributyrin (Tb) - a butyrate prodrug - significantly prevented ethanol-induced decrease in butyrate-producing bacteria, hepatic steatosis, inflammation, and injury. Taken together, our findings strongly suggest that the loss of butyrate-producing bacteria using the acetyl-CoA pathway is a significant pathogenic feature of ethanol-induced microbial dysbiosis and ALD and can be targeted for therapy.


Assuntos
Butiratos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Coenzima A-Transferases/metabolismo , Disbiose/induzido quimicamente , Etanol/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ruminococcus/metabolismo , Animais , Modelos Animais de Doenças , Disbiose/fisiopatologia , Humanos , Redes e Vias Metabólicas , Camundongos
15.
EXCLI J ; 20: 851-862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177407

RESUMO

Nocardiosis is a rare but life-threatening infection caused by aerobic Actinomycetes of the genus Nocardia particularly affecting immunocompromised hosts. The identification of Nocardia ssp. and antibiotic susceptibility testing by standard microbiological methods are incomplete and molecular techniques may improve diagnostics. We studied 39 Nocardia strains isolated from 33 patients between 2000 and 2018. Twenty-four patients (72.7 %) were immunocompromised. Whole genome sequencing (WGS) revealed a broad taxonomic range of those isolates spanning 13 different species, including four strains that belonged to three novel species based on average nucleotide identity (ANI < 95 % with currently available genome sequences). 16S rRNA gene analyses mirrored WGS results. Conventional MALDI-TOF analysis correctly identified 29 isolates at the species level (74.4 %). Our advanced protocol with formic acid and acetonitrile treatment increased identification to 35 isolates (89.7 %). Antibiotic resistance was tested using both a microdilution method and MIC strip testing. Results were in good concordance with an overall trimethoprim-sulfamethoxazole (SXT) resistance rate of 13.5 %. WGS of a SXT resistant N. farcinica isolate showed a deletion of several amino acids in a homolog of dihydropteroate synthase (FolP2) that was not seen in sensitive members of this species. Diversity of Nocardia isolates was high and involved many different species, suggesting that this taxon has broadly distributed mechanisms for infecting individuals. Widely applicable diagnostic methods including MALDI-TOF and 16S rRNA gene analyses correctly identified most strains. WGS additionally revealed molecular insights into SXT resistance mechanisms of clinical Nocardia isolates highlighting the potential application of (meta)genomic-based diagnostics in the future.

16.
mSystems ; 6(1)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622856

RESUMO

Reproducibility is a major issue in microbiome studies, which is partly caused by missing consensus about data analysis strategies. The complex nature of microbiome data, which are high-dimensional, zero-inflated, and compositional, makes them challenging to analyze, as they often violate assumptions of classic statistical methods. With advances in human microbiome research, research questions and study designs increase in complexity so that more sophisticated data analysis concepts are applied. To improve current practice of the analysis of microbiome studies, it is important to understand what kind of research questions are asked and which tools are used to answer these questions. We conducted a systematic literature review considering all publications focusing on the analysis of human microbiome data from June 2018 to June 2019. Of 1,444 studies screened, 419 fulfilled the inclusion criteria. Information about research questions, study designs, and analysis strategies were extracted. The results confirmed the expected shift to more advanced research questions, as one-third of the studies analyzed clustered data. Although heterogeneity in the methods used was found at any stage of the analysis process, it was largest for differential abundance testing. Especially if the underlying data structure was clustered, we identified a lack of use of methods that appropriately addressed the underlying data structure while taking into account additional dependencies in the data. Our results confirm considerable heterogeneity in analysis strategies among microbiome studies; increasingly complex research questions require better guidance for analysis strategies.IMPORTANCE The human microbiome has emerged as an important factor in the development of health and disease. Growing interest in this topic has led to an increasing number of studies investigating the human microbiome using high-throughput sequencing methods. However, the development of suitable analytical methods for analyzing microbiome data has not kept pace with the rapid progression in the field. It is crucial to understand current practice to identify the scope for development. Our results highlight the need for an extensive evaluation of the strengths and shortcomings of existing methods in order to guide the choice of proper analysis strategies. We have identified where new methods could be designed to address more advanced research questions while taking into account the complex structure of the data.

17.
Hepatology ; 74(1): 72-82, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33411981

RESUMO

BACKGROUND AND AIMS: It is well accepted that liver diseases and their outcomes are associated with intestinal microbiota, but causality is difficult to establish. The intestinal microbiota are altered in patients with hepatitis C. As chronic HCV infection can now be cured in almost all patients, it is an ideal model to study the influence of liver disease on the microbiota. APPROACH AND RESULTS: We aimed to prospectively analyze the changes in the gut microbiome in patients who received direct-acting antivirals (DAA) and achieved sustained virological response (SVR). Amplicon sequencing of the V1-V2 region in the 16S ribosomal RNA gene was performed in stool samples of patients with chronic hepatitis C. Patients in the treatment group received DAA (n = 65), whereas in the control group, no DAA were given (n = 33). Only patients achieving SVR were included. The alpha diversity increased numerically but not significantly from baseline to SVR at week 24 or 48 (SVR24/48; 2.784 ± 0.248 vs. 2.846 ± 0.224; P = 0.057). When stratifying for the presence of liver cirrhosis, a significant increase in diversity was only seen in patients without cirrhosis. Differences in the microbial community structure induced by the achievement of SVR were only observed in patients without liver cirrhosis. In patients with liver cirrhosis and in the control group, no significant differences were observed. CONCLUSIONS: In conclusion, the achievement of SVR24/48 in patients with chronic HCV was associated with changes in the intestinal microbiota. However, these changes were only seen in patients without liver cirrhosis. A major role of liver remodeling on the intestinal microbiota is indicated by the dynamics of the intestinal microbial community structure depending on the stage of fibrosis in patients resolving chronic hepatitis C.


Assuntos
Antivirais/uso terapêutico , Disbiose/diagnóstico , Microbioma Gastrointestinal/imunologia , Hepatite C Crônica/tratamento farmacológico , Cirrose Hepática/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Disbiose/imunologia , Disbiose/microbiologia , Técnicas de Imagem por Elasticidade , Feminino , Hepacivirus/imunologia , Hepacivirus/isolamento & purificação , Hepatite C Crônica/imunologia , Hepatite C Crônica/patologia , Hepatite C Crônica/virologia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Fígado/virologia , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resposta Viral Sustentada
18.
Front Microbiol ; 12: 812544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173695

RESUMO

Factors governing resistance in carbapenem-resistant Enterobacteriaceae are manifold. Despite ample research efforts, underlying molecular mechanisms are still only partly understood. Furthermore, little is known on (eco)physiological consequences from resistance acquisition originating from distinct mechanisms in respective bacteria. In this study, we examined physiological adaptation of Escherichia coli clinical isolates exhibiting two distinct resistance mechanisms-either carrying a carbapenemase (n = 4, CARB) or alterations in porin-encoding genes (n = 6, POR)-during growth with sublethal concentrations of ertapenem in chemostat culture. Basic growth parameters based on optical density and flow-cytometric analyses as well as global gene expression patterns using RNA-Seq were recorded. We demonstrate that strategies to deal with the antibiotic were distinct between strains of the two groups, where (increased) expression of carbapenemases was the major response in CARB, whereas wide-spread alterations in gene-expression that promoted a survival-like phenotype was observed in POR. The response in POR was accompanied with "costs of resistance" resulting in reduced growth efficiencies compared with CARB that are intrinsic to that group and were also observed during growth without antibiotic challenge, however, at lower levels. All strains showed similar minimal inhibitory concentrations and did not form phylogenetic groups, indicating that results cannot be attributed to distinct resistance levels or phylogenetic relationships, but are indeed based on the resistance mechanism.

19.
Nat Aging ; 1(12): 1127-1136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-37117525

RESUMO

Understanding the physiological origins of age-related cognitive decline is of critical importance given the rising age of the world's population1. Previous work in animal models has established a strong link between cognitive performance and the microbiota2-5, and it is known that the microbiome undergoes profound remodeling in older adults6. Despite growing evidence for the association between age-related cognitive decline and changes in the gut microbiome, the mechanisms underlying such interactions between the brain and the gut are poorly understood. Here, using fecal microbiota transplantation (FMT), we demonstrate that age-related remodeling of the gut microbiota leads to decline in cognitive function in mice and that this impairment can be rescued by transplantation of microbiota from young animals. Moreover, using a metabolomic approach, we found elevated concentrations of δ-valerobetaine, a gut microbiota-derived metabolite, in the blood and brain of aged mice and older adults. We then demonstrated that δ-valerobetaine is deleterious to learning and memory processes in mice. At the neuronal level, we showed that δ-valerobetaine modulates inhibitory synaptic transmission and neuronal network activity. Finally, we identified specific bacterial taxa that significantly correlate with δ-valerobetaine levels in the brain. Based on our findings, we propose that δ-valerobetaine contributes to microbiota-driven brain aging and that the associated mechanisms represent a promising target for countering age-related cognitive decline.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Microbiota/fisiologia , Microbioma Gastrointestinal/fisiologia , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Encéfalo/metabolismo
20.
Sci Rep ; 10(1): 6118, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273571

RESUMO

Obesity has emerged as a major global health problem and is associated with various diseases, such as metabolic syndrome, type 2 diabetes mellitus, and cardiovascular diseases. The inbred C57BL/6 mouse strain is often used for various experimental investigations, such as metabolic research. However, over time, genetically distinguishable C57BL/6 substrains have evolved. The manifestation of genetic alterations has resulted in behavioral and metabolic differences. In this study, a comparison of diet-induced obesity in C57BL/6JHanZtm, C57BL/6NCrl and C57BL/6 J mice revealed several metabolic and immunological differences such as blood glucose level and cytokine expression, respectively, among these C57BL/6 substrains. For example, C57BL/6NCrl mice developed the most pronounced adiposity, whereas C57BL/6 J mice showed the highest impairment in glucose tolerance. Moreover, our results indicated that the immunological phenotype depends on the intestinal microbiota, as the cell subset composition of the colon was similar in obese ex-GF B6NRjB6JHanZtm and obese B6JHanZtm mice. Phenotypic differences between C57BL/6 substrains are caused by a complex combination of genetic and microbial alterations. Therefore, in performing metabolic research, considering substrain-specific characteristics, which can influence the course of study, is important. Moreover, for unbiased comparison of data, the entire strain name should be shared with the scientific community.


Assuntos
Microbioma Gastrointestinal , Genótipo , Obesidade/genética , Fenótipo , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/microbiologia , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA