Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(30): 20544-20549, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39016546

RESUMO

The germanosilicide Na4-xGeySi16-y (0.4 ≤ x ≤ 1.1, 4.7 ≤ y ≤ 9.3) was synthesized under high-pressure, high-temperature conditions. The novel guest-host compound comprises a unique tetrel framework with dual channels housing sodium and smaller, empty (Si,Ge)9 units. The arrangement represents a new structure type with an overall structural topology that is closely related to a hypothetical carbon allotrope. Topological analysis of the structure revealed that the guest environment space cannot be tiled with singular polyhedra as in cage compounds (e.g., clathrates). The analysis of natural tilings provides a convenient method to unambiguously compare related tetrel-rich structures and can help elucidate new possible structural arrangements of intermetallic compounds.

2.
Nano Lett ; 24(23): 6981-6989, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38814739

RESUMO

In this study, we conducted a high-pressure investigation of Cu2-xSe nanostructures with pyramid- and plate-like morphologies, created through cation exchange from zinc-blende CdSe nanocrystals and wurtzite CdSe nanoplatelets respectively. Using a diamond anvil cell setup at the APS synchrotron, we observed the phase transitions in the Cu2-xSe nanostructures up to 40 GPa, identifying a novel CsCl-type lattice with Pm3̅m symmetry above 4 GPa. This CsCl-type structure, previously unreported in copper selenides, was partially retained after decompression. Our results indicate that the initial crystalline structure of CdSe does not affect the stability of Cu2-xSe nanostructures formed via cation exchange. Both morphologies of Cu2-xSe sintered under compression, potentially contributing to the stabilization of the high-pressure phase through interfacial defects. These findings are significant for discovering new phases with potential applications in future technologies.

3.
ACS Earth Space Chem ; 8(4): 654-664, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38654897

RESUMO

Carbonates are important carbon-bearing phases in the mantle. While their role in upper mantle petrologic processes has been well studied, their effect on phase relations, melting, and transport properties in the lower mantle is less understood. The stability of carbonates in the mantle depends on a host of factors, including pressure, temperature, oxygen fugacity, and reactions with surrounding mantle phases. To understand the stability of carbonates in the presence of metal in the lower mantle, carbonate-metal reaction experiments on the Fe-Si-Ca-Mg-C-O system were conducted up to 124 GPa and 3200 K. We find that carbonates react with iron alloys to form silicates, iron carbides, and oxides. However, the temperature at which these reactions occur increases with pressure, indicating that along a geotherm in the lowermost mantle carbonates are the stable carbon-bearing phase. Carbon is found to be less siderophilic at high-pressure compared to silicon.

4.
Chemistry ; 30(32): e202400536, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38527310

RESUMO

In this study, we conduct extensive high-pressure experiments to investigate phase stability in the cobalt-nitrogen system. Through a combination of synthesis in a laser-heated diamond anvil cell, first-principles calculations, Raman spectroscopy, and single-crystal X-ray diffraction, we establish the stability fields of known high-pressure phases, hexagonal NiAs-type CoN, and marcasite-type CoN2 within the pressure range of 50-90 GPa. We synthesize and characterize previously unknown nitrides, Co3N2, Pnma-CoN and two polynitrides, CoN3 and CoN5, within the pressure range of 90-120 GPa. Both polynitrides exhibit novel types of polymeric nitrogen chains and networks. CoN3 feature branched-type nitrogen trimers (N3) and CoN5 show π-bonded nitrogen chain. As the nitrogen content in the cobalt nitride increases, the CoN6 polyhedral frameworks transit from face-sharing (in CoN) to edge-sharing (in CoN2 and CoN3), and finally to isolated (in CoN5). Our study provides insights into the intricate interplay between structure evolution, bonding arrangements, and high-pressure synthesis in polynitrides, expanding the knowledge for the development of advanced energy materials.

5.
Eur J Pharm Biopharm ; 197: 114233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387849

RESUMO

The aim of this study was to develop azithromycin (AZT)-loaded liposomes (LP) and niosomes (NS) useful for the treatment of bacterial skin infections and acne. LP based on phosphatidylcholine from egg yolk (EPC) or from soybean lecithin (SPC), and NS composed of sorbitan monopalmitate (Span 40) or sorbitan monostearate (Span 60) were prepared through the thin film hydration (TFH) and the ethanol injection (EI) methods. The formulations were subsequently characterized for their physico-chemical and functional properties. Vesicles prepared through TFH showed higher average sizes than the corresponding formulations obtained by EI. All the vesicles presented adequate encapsulation efficiency and a negative ζ potential, which assured good stability during the storage period (except for LP-SPC). Formulations prepared with TFH showed a more prolonged AZT release than those prepared through EI, due to their lower surface area and multilamellar structure, as confirmed by atomic force microscopy nanomechanical characterization. Finally, among all the formulations, NS-Span 40-TFH and LP-EPC-TFH allowed the highest drug accumulation in the skin, retained the antimicrobial activity and did not alter fibroblast metabolism and viability. Overall, they could ensure to minimize the dosing and the administration frequency, thus representing promising candidates for the treatment of bacterial skin infections and acne.


Assuntos
Acne Vulgar , Lipossomos , Humanos , Lipossomos/química , Excipientes/metabolismo , Azitromicina/farmacologia , Azitromicina/metabolismo , Pele/metabolismo , Acne Vulgar/metabolismo
6.
Inorg Chem ; 63(11): 4875-4882, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38412505

RESUMO

The reaction between PrO2 and SiO2 was investigated at various pressure points up to 29 GPa in a diamond anvil cell using laser heating and in situ single-crystal structure analysis. The pressure points at 5 and 10 GPa produced Pr2III(Si2O7), whereas Pr4IIISi3O12 and Pr2IV(O2)O3 were obtained at 15 GPa. Pr4IIISi3O12 can be interpreted as a high-pressure modification of the still unknown orthosilicate Pr4III(SiO4)3. PrIVSi3O8 and Pr2IVSi7O18 that contain praseodymium in its rare + IV oxidation state were identified at 29 GPa. After the pressure was released from the reaction chamber, the Pr(IV) silicates could be recovered, indicating that they are metastable at ambient pressure. Density functional theory calculations of the electronic structure corroborate the oxidation state of praseodymium in both PrIVSi3O8 and Pr2IVSi7O18. Both silicates are the first structurally characterized representatives of Pr4+-containing salts with oxoanions. All three silicates contain condensed networks of [SiO6] octahedra which is unprecedented in the rich chemistry of lanthanoid silicates.

7.
J Phys Chem Lett ; 15(9): 2344-2351, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38387075

RESUMO

Compression of small molecules can induce solid-state reactions that are difficult or impossible under conventional, solution-phase conditions. Of particular interest is the topochemical-like reaction of arenes to produce polymeric nanomaterials. However, high reaction onset pressures and poor selectivity remain significant challenges. Herein, the incorporation of electron-withdrawing and -donating groups into π-stacked arenes is proposed as a strategy to reduce reaction barriers to cycloaddition and onset pressures. Nevertheless, competing side-chain reactions between functional groups represent alternative viable pathways. For the case of a diaminobenzene:tetracyanobenzene cocrystal, amidine formation between amine and cyano groups occurs prior to cycloaddition with an onset pressure near 9 GPa, as determined using vibrational spectroscopy, X-ray diffraction, and first-principles calculations. This work demonstrates that reduced-barrier cycloaddition reactions are theoretically possible via strategic functionalization; however, the incorporation of pendant groups may enable alternative reaction pathways. Controlled reactions between pendant groups represent an additional strategy for producing unique polymeric nanomaterials.

8.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054834

RESUMO

Externally heated diamond anvil cells provide a stable and uniform thermal environment, making them a versatile device to simultaneously generate high-pressure and high-temperature conditions in various fields of research, such as condensed matter physics, materials science, chemistry, and geosciences. The present study features the Externally Heated Diamond ANvil Cell Experimentation (EH-DANCE) system, a versatile configuration consisting of a diamond anvil cell with a customized microheater for stable resistive heating, bidirectional pressure control facilitated by compression and decompression membranes, and a water-cooled enclosure suitable for vacuum and controlled atmospheres. This integrated system excels with its precise control of both pressure and temperature for mineral and materials science research under extreme conditions. We showcase the capabilities of the system through its successful application in the investigation of the melting temperature and thermal equation of state of high-pressure ice-VII at temperatures up to 1400 K. The system was also used to measure the elastic properties of solid ice-VII and liquid H2O using Brillouin scattering and Raman spectra of carbonates using Raman spectroscopy, highlighting the potential of the EH-DANCE system in high-pressure research.

9.
Proc Natl Acad Sci U S A ; 120(52): e2309786120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109550

RESUMO

Many sub-Neptune exoplanets have been believed to be composed of a thick hydrogen-dominated atmosphere and a high-temperature heavier-element-dominant core. From an assumption that there is no chemical reaction between hydrogen and silicates/metals at the atmosphere-interior boundary, the cores of sub-Neptunes have been modeled with molten silicates and metals (magma) in previous studies. In large sub-Neptunes, pressure at the atmosphere-magma boundary can reach tens of gigapascals where hydrogen is a dense liquid. A recent experiment showed that hydrogen can induce the reduction of Fe[Formula: see text] in (Mg,Fe)O to Fe[Formula: see text] metal at the pressure-temperature conditions relevant to the atmosphere-interior boundary. However, it is unclear whether Mg, one of the abundant heavy elements in the planetary interiors, remains oxidized or can be reduced by H. Our experiments in the laser-heated diamond-anvil cell found that heating of MgO + Fe to 3,500 to 4,900 K (close to or above their melting temperatures) in an H medium leads to the formation of Mg[Formula: see text]FeH[Formula: see text] and H[Formula: see text]O at 8 to 13 GPa. At 26 to 29 GPa, the behavior of the system changes, and Mg-H in an H fluid and H[Formula: see text]O were detected with separate FeH[Formula: see text]. The observations indicate the dissociation of the Mg-O bond by H and subsequent production of hydride and water. Therefore, the atmosphere-magma interaction can lead to a fundamentally different mineralogy for sub-Neptune exoplanets compared with rocky planets. The change in the chemical reaction at the higher pressures can also affect the size demographics (i.e., "radius cliff") and the atmosphere chemistry of sub-Neptune exoplanets.

10.
Nat Commun ; 14(1): 7336, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957142

RESUMO

The high-pressure melting curve of FeO controls key aspects of Earth's deep interior and the evolution of rocky planets more broadly. However, existing melting studies on wüstite were conducted across a limited pressure range and exhibit substantial disagreement. Here we use an in-situ dual-technique approach that combines a suite of >1000 x-ray diffraction and synchrotron Mössbauer measurements to report the melting curve for Fe1-xO wüstite to pressures of Earth's lowermost mantle. We further observe features in the data suggesting an order-disorder transition in the iron defect structure several hundred kelvin below melting. This solid-solid transition, suggested by decades of ambient pressure research, is detected across the full pressure range of the study (30 to 140 GPa). At 136 GPa, our results constrain a relatively high melting temperature of 4140 ± 110 K, which falls above recent temperature estimates for Earth's present-day core-mantle boundary and supports the viability of solid FeO-rich structures at the roots of mantle plumes. The coincidence of the defect order-disorder transition with pressure-temperature conditions of Earth's mantle base raises broad questions about its possible influence on key physical properties of the region, including rheology and conductivity.

11.
Nat Commun ; 14(1): 6207, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798268

RESUMO

The allotropy of solid molecular nitrogen is the consequence of a complex interplay between fundamental intermolecular as well as intramolecular interactions. Understanding the underlying physical mechanisms hinges on knowledge of the crystal structures of these molecular phases. That is especially true for ζ-N2, key to shed light on nitrogen's polymerization. Here, we perform single-crystal X-ray diffraction on laser-heated N2 samples at 54, 63, 70 and 86 GPa and solve and refine the hitherto unknown structure of ζ-N2. In its monoclinic unit cell (space group C2/c), 16 N2 molecules are arranged in a configuration similar to that of ε-N2. The structure model provides an explanation for the previously identified Raman and infrared lattice and vibrational modes of ζ-N2. Density functional theory calculations give an insight into the gradual delocalization of electronic density from intramolecular bonds to intermolecular space and suggest a possible pathway towards nitrogen's polymerization.

13.
J Synchrotron Radiat ; 30(Pt 4): 671-685, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37318367

RESUMO

An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5 MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (≤103 s-1), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in ≥340 µs, compatible with the maximum length of the pulse train (550 µs). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87 TPa s-1 was observed during the fast compression of Au, while a strain rate of ∼1100 s-1 was achieved during the rapid compression of N2 at 23 TPa s-1.


Assuntos
Diamante , Lasers , Difração de Raios X , Pressão , Raios X
14.
J Phys Condens Matter ; 35(26)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36990098

RESUMO

The amorphous selenium (a-Se) was studied via x-ray diffraction (XRD) under pressures ranging from ambient pressure up to 30 GPa at room temperature to study its high-pressure behavior. Two compressional experiments on a-Se samples, with and without heat treatment, respectively, were conducted. Contrary to the previous reports that a-Se crystallized abruptly at around 12 GPa, in this work we report an early partially crystallized state at 4.9 GPa before completing the crystallization at around 9.5 GPa based onin-situhigh pressure XRD measurements on the a-Se with 70 °C heat treatment. In comparison, crystallization pressure on another a-Se sample without thermal treatment history was observed to be 12.7 GPa, consistent with the previously reported crystallization pressure. Thus, it is proposed in this work that prior heat treatment of a-Se can result in an earlier crystallization under high pressure, which helps to understand the possible mechanism caused by the previous controversial reports on pressure induced crystallization behavior in a-Se.

15.
Nature ; 615(7953): 646-651, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36792829

RESUMO

Seismic studies have found fine-scale anomalies at the core-mantle boundary (CMB), such as ultralow velocity zones (ULVZs)1,2 and the core rigidity zone3,4. ULVZs have been attributed to mantle-related processes5-10, but little is known about a possible core origin. The precipitation of light elements in the outer core has been proposed to explain the core rigidity zone3, but it remains unclear what processes can lead to such precipitation. Despite its importance for the outer core11, the melting behaviour of Fe-Si-H at relevant pressure-temperature conditions is not well understood. Here we report observations of the crystallization of B2 FeSi from Fe-9wt%Si melted in the presence of hydrogen up to 125 GPa and 3,700 K by using laser-heated diamond anvil cells. Hydrogen dramatically increases the Si concentration in the B2 crystals to a molar ratio of Si:Fe ≈ 1, whereas it mostly remains in the coexisting Fe liquid. The high Si content in the B2 phase makes it stable in a solid form at the outermost core temperatures and less dense than the surrounding liquids. Consequently, the Si-rich crystallites could form, float and be sedimented to the underside of the CMB interface, and that well explains the core side rigidity anomalies3,4. If a small amount of the FeSi crystals can be incorporated into the mantle, they would form dense low-velocity structures above the CMB, which may account for some ULVZs10. The B2 FeSi precipitation promoted by H in the outermost core provides a single core-driven origin for two types of anomalies at the CMB. Such a scenario could also explain the core-like tungsten isotope signatures in ocean island basalts12, after the materials equilibrated with the precipitates are entrained to the uppermost mantle by the mantle plumes connected to ULVZs.

16.
Angew Chem Int Ed Engl ; 62(14): e202217023, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36757113

RESUMO

Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid. The resulting product possesses high-density, pendant carboxyl functionalization along both sides of the backbone, enabling new opportunities for the post-synthetic processing and chemical modification of nanothread materials applicable to a broad range of potential applications.

17.
Proc Natl Acad Sci U S A ; 120(9): e2217125120, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802438

RESUMO

Sodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three "hyperhydrated" sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl·17H2O (SC8.5); NaCl·13H2O (SC13)]. We found that the dissociation of Na+ and Cl- ions within these crystal lattices allows for the high incorporation of water molecules and thus explain their hyperhydration. This finding suggests that a great diversity of hyperhydrated crystalline phases of common salts might be found at similar conditions. Thermodynamic constraints indicate that SC8.5 is stable at room pressure below 235 K, and it could be the most abundant NaCl hydrate on icy moon surfaces like Europa, Titan, Ganymede, Callisto, Enceladus, or Ceres. The finding of these hyperhydrated structures represents a major update to the H2O-NaCl phase diagram. These hyperhydrated structures provide an explanation for the mismatch between the remote observations of the surface of Europa and Ganymede and previously available data on NaCl solids. It also underlines the urgent need for mineralogical exploration and spectral data on hyperhydrates at relevant conditions to help future icy world exploration by space missions.

18.
Innovation (Camb) ; 4(1): 100354, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36457892

RESUMO

Oxygen and iron are the most abundant elements on Earth, and their compounds are key planet-forming components. While oxygen is pervasive in the mantle, its presence in the solid inner core is still debatable. Yet, this issue is critical to understanding the co-evolution and the geomagnetic field generation. Thus far, iron monoxide (FeO) is the only known stoichiometric compound in the Fe-FeO system, and the existence of iron-rich Fe n O compounds has long been speculated. Here, we report that iron reacts with FeO and Fe2O3 at 220-260 GPa and 3000-3500 K in laser-heated diamond anvil cells. Ab initio structure searches using the adaptive genetic algorithm indicate that a series of stable stoichiometric Fe n O compounds (with n > 1) can be formed. Like ε-Fe and B8-FeO, Fe n O compounds have close-packed layered structures featuring oxygen-only single layers separated by iron-only layers. Two solid-solution models with compositions close to Fe2O, the most stable Fe-rich phase identified, explain the X-ray diffraction patterns of the experimental reaction products quenched to room temperature. These results suggest that Fe-rich Fe n O compounds with close-packed layered motifs might be stable under inner core conditions. Future studies of the elastic, rheological, and thermal transport properties of these more anisotropic Fe n O solids should provide new insights into the seismic features of the inner core, inner core formation process and composition, and the thermal evolution of the planet.

19.
Chem Mater ; 34(18): 8138-8152, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36186668

RESUMO

Transition metal borides are known due to their attractive mechanical, electronic, refractive, and other properties. A new class of rhenium borides was identified by synchrotron single-crystal X-ray diffraction experiments in laser-heated diamond anvil cells between 26 and 75 GPa. Recoverable to ambient conditions, compounds rhenium triboride (ReB3) and rhenium tetraboride (ReB4) consist of close-packed single layers of rhenium atoms alternating with boron networks built from puckered hexagonal layers, which link short bonded (∼1.7 Å) axially oriented B2 dumbbells. The short and incompressible Re-B and B-B bonds oriented along the hexagonal c-axis contribute to low axial compressibility comparable with the linear compressibility of diamond. Sub-millimeter samples of ReB3 and ReB4 were synthesized in a large-volume press at pressures as low as 33 GPa and used for material characterization. Crystals of both compounds are metallic and hard (Vickers hardness, H V = 34(3) GPa). Geometrical, crystal-chemical, and theoretical analysis considerations suggest that potential ReB x compounds with x > 4 can be based on the same principle of structural organization as in ReB3 and ReB4 and possess similar mechanical and electronic properties.

20.
IUCrJ ; 9(Pt 5): 573-579, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071798

RESUMO

Water is an essential chemical compound for living organisms, and twenty of its different crystal solid forms (ices) are known. Still, there are many fundamental problems with these structures such as establishing the correct positions and thermal motions of hydrogen atoms. The list of ice structures is not yet complete as DFT calculations have suggested the existence of additional and - to date - unknown phases. In many ice structures, neither neutron diffraction nor DFT calculations nor X-ray diffraction methods can easily solve the problem of hydrogen atom disorder or accurately determine their anisotropic displacement parameters (ADPs). Here, accurate crystal structures of H2O, D2O and mixed (50%H2O/50%D2O) ice VI obtained by Hirshfeld atom refinement (HAR) of high-pressure single-crystal synchrotron and laboratory X-ray diffraction data are presented. It was possible to obtain O-H/D bond lengths and ADPs for disordered hydrogen atoms which are in good agreement with the corresponding single-crystal neutron diffraction data. These results show that HAR combined with X-ray diffraction can compete with neutron diffraction in detailed studies of polymorphic forms of ice and crystals of other hydrogen-rich compounds. As neutron diffraction is relatively expensive, requires larger crystals which can be difficult to obtain and access to neutron facilities is restricted, cheaper and more accessible X-ray measurements combined with HAR can facilitate the verification of the existing ice polymorphs and the quest for new ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA