Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401417

RESUMO

Global warming and eutrophication contribute to formation of HABs and distribution of alien cyanobacteria northward. The current study assessed how alien to Europe Sphaerospermopsis aphanizomenoides and Chrysosporum bergii will co-occur with dominant native Planktothrix agardhii and Aphanizomenon gracile species under changing conditions in temperate freshwaters. The experiments were carried out to examine the effect of nutrients and temperature on the growth rate of cyanobacteria, production of cyanotoxins, and interspecies competition. The highest growth rate was determined for A. gracile (0.43 day-1) and S. aphanizomenoides (0.40 day-1) strains at all the tested nutrient concentrations (IP and IN were significant factors). S. aphanizomenoides adapted to the wide range of nutrient concentrations and temperature due to high species ecological plasticity; however, A. gracile was able to suppress its dominance under changing conditions. Regularity between tested variables and STX concentration in A. gracile was not found, but IP concentration negatively correlated with the amount of dmMC-RR and other non-ribosomal peptides (NRPs) in P. agardhii strains. The relative concentration of NRPs in nontoxic P. agardhii strain was up to 3-fold higher than in MC-producing strain. Our study indicated that nutrients, temperature, and species had significant effects on interspecies competition. A. gracile had a negative effect on biomass of both alien species and P. agardhii.


Assuntos
Cianobactérias/classificação , Cianobactérias/fisiologia , Lagos/microbiologia , Saxitoxina/química , Poluentes Químicos da Água/química , Proliferação Nociva de Algas , Lagos/química , Saxitoxina/metabolismo , Especificidade da Espécie , Temperatura
2.
Toxins (Basel) ; 10(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380769

RESUMO

In response to global warming, an increase in cyanobacterial blooms is expected. In this work, the response of two native species of Planktothrix agardhii and Aphanizomenon gracile, as well as the response of two species alien to Europe-Chrysosporum bergii and Sphaerospermopsis aphanizomenoides-to gradual temperature increase was tested. The northernmost point of alien species distribution in the European continent was recorded. The tested strains of native species were favoured at 20⁻28 °C. Alien species acted differently along temperature gradient and their growth rate was higher than native species. Temperature range of optimal growth rate for S. aphanizomenoides was similar to native species, while C. bergii was favoured at 26⁻30 °C but sensitive at 18⁻20 °C. Under all tested temperatures, non-toxic strains of the native cyanobacteria species prevailed over the toxic ones. In P. agardhii, the decrease in concentration of microcystins and other oligopeptides with the increasing temperature was related to higher growth rate. However, changes in saxitoxin concentration in A. gracile under different temperatures were not detected. Accommodating climate change perspectives, the current work showed a high necessity of further studies of temperature effect on distribution and toxicity of both native and alien cyanobacterial species.


Assuntos
Cianobactérias/isolamento & purificação , Eutrofização , Lagos/microbiologia , Temperatura
3.
Harmful Algae ; 78: 69-74, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30196926

RESUMO

The effect of cyanophage infection and lysis on the dynamics of the hepatotoxin nodularin (NOD) and other non-ribosomal peptides (NRPs) produced by cyanobacteria is poorly understood. In this study, changes in concentration of NOD and other NRPs during cyanophage infection of the filamentous cyanobacteria Nodularia spumigena were assessed using incubation experiments. Viral infection and lysis were associated with a significant reduction (93% at the 96 h post infection) of N. spumigena cell density. While no correlation between N. spumigena abundance and total concentration of NOD (ng mL-1) within the infected cells was observed, cellular NOD quota (ng cell-1) gradually increased in the remaining cyanophage resistant N. spumigena subpopulation. Lysis of N. spumigena cells resulted in a substantial increase (>57 times) of dissolved NOD concentration in the culture medium. The relative concentration of other cyclic (anabaenopeptins) and linear (aeruginosins, spumigins) NRPs produced by N. spumigena also increased in response to cyanophage addition. This study highlights the importance of cyanophage infection on the population toxicity of filamentous cyanobacteria and demonstrates a significant contribution of virus-mediated cell lysis on the conversion of NOD from the particulate to dissolved phase.


Assuntos
Bacteriófagos/fisiologia , Cianobactérias/metabolismo , Cianobactérias/virologia , Peptídeos Cíclicos/metabolismo , Biodegradação Ambiental , Cromatografia Líquida , Monitoramento Ambiental , Peptídeos/metabolismo , Densidade Demográfica , Espectrometria de Massas em Tandem
4.
Toxins (Basel) ; 10(4)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652856

RESUMO

Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.


Assuntos
Toxinas Bacterianas/análise , Cianobactérias , Lagos/microbiologia , Microcistinas/análise , Tropanos/análise , Uracila/análogos & derivados , Poluentes da Água/análise , Alcaloides , Mudança Climática , Toxinas de Cianobactérias , Monitoramento Ambiental , Europa (Continente) , Temperatura , Uracila/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA